Pour une surface à caractéristique d’Euler négative, nous considérons la classe des métriques à courbure négative, à volume fixé, et conformément équivalent à une métrique fixée. Pour cette classe de métriques, nous montrons que l’entropie métrique du flot géodésique est flexible, mais qu’à contrario, il y a des restrictions sur l’entropie topologique ainsi que la systole. Ce faisant, nous obtenons aussi un lemme du collier, une décomposition « épaisse-fine », et un théorème de précompacité pour cette classe de métrique. Nous étendons aussi certains de nos résultats au classes de métriques où la condition de courbure négative est remplacée par la condition de ne pas avoir de points focaux et d’avoir une certaine borne pour l’intégrale de la partie positive de la courbure de Gauss.
We show the flexibility of the metric entropy and obtain additional restrictions on the topological entropy of geodesic flow on closed surfaces of negative Euler characteristic with smooth non-positively curved Riemannian metrics with fixed total area in a fixed conformal class. Moreover, we obtain a collar lemma, a thick-thin decomposition, and precompactness for the considered class of metrics. Also, we extend some of the results to metrics of fixed total area in a fixed conformal class with no focal points and with some integral bounds on the positive part of the Gaussian curvature.
Révisé le :
Accepté le :
Publié le :
Keywords: conformal class, topological entropy, metric entropy
Mot clés : classe conforme, entropie topologique, entropie métrique
Barthelmé, Thomas 1 ; Erchenko, Alena 2
@article{AIF_2021__71_2_731_0, author = {Barthelm\'e, Thomas and Erchenko, Alena}, title = {Geometry and entropies in a fixed conformal class on surfaces}, journal = {Annales de l'Institut Fourier}, pages = {731--755}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {71}, number = {2}, year = {2021}, doi = {10.5802/aif.3410}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3410/} }
TY - JOUR AU - Barthelmé, Thomas AU - Erchenko, Alena TI - Geometry and entropies in a fixed conformal class on surfaces JO - Annales de l'Institut Fourier PY - 2021 SP - 731 EP - 755 VL - 71 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3410/ DO - 10.5802/aif.3410 LA - en ID - AIF_2021__71_2_731_0 ER -
%0 Journal Article %A Barthelmé, Thomas %A Erchenko, Alena %T Geometry and entropies in a fixed conformal class on surfaces %J Annales de l'Institut Fourier %D 2021 %P 731-755 %V 71 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3410/ %R 10.5802/aif.3410 %G en %F AIF_2021__71_2_731_0
Barthelmé, Thomas; Erchenko, Alena. Geometry and entropies in a fixed conformal class on surfaces. Annales de l'Institut Fourier, Tome 71 (2021) no. 2, pp. 731-755. doi : 10.5802/aif.3410. https://aif.centre-mersenne.org/articles/10.5802/aif.3410/
[1] Conformal invariants: topics in geometric function theory, McGraw-Hill Series in Higher Mathematics, McGraw-Hill, 1973, ix+157 pages | Zbl
[2] Flexibility of geometric and dynamical data in fixed conformal classes, Indiana Univ. Math. J., Volume 69 (2020) no. 2, pp. 513-540 | MR | Zbl
[3] Lectures on hyperbolic geometry, Universitext, Springer, 1992, xiv+330 pages | DOI
[4] Geometric inequalities, Grundlehren der Mathematischen Wissenschaften, 285, Springer, 1988, xiv+331 pages | DOI | MR
[5] The collar theorem and examples, Manuscr. Math., Volume 25 (1978) no. 4, pp. 349-357 | DOI | MR | Zbl
[6] Riemannian geometry—a modern introduction, Cambridge Tracts in Mathematics, 108, Cambridge University Press, 1993, xii+386 pages | MR
[7] A compactness theorem for surfaces with Bounded Integral Curvature, J. Inst. Math. Jussieu (2018), pp. 1-49 | MR | Zbl
[8] Flexibility of entropies for surfaces of negative curvature, Isr. J. Math., Volume 232 (2019) no. 2, pp. 631-676 | DOI | MR | Zbl
[9] Filling Riemannian manifolds, J. Differ. Geom., Volume 18 (1983) no. 1, pp. 1-147 | MR | Zbl
[10] Metaphors in systolic geometry, Proceedings of the International Congress of Mathematicians. Volume II (2010), pp. 745-768 | MR | Zbl
[11] A simple proof of an isoperimetric inequality for Euclidean and hyperbolic cone-surfaces, Differ. Geom. Appl., Volume 43 (2015), pp. 95-101 | DOI | MR | Zbl
[12] Entropy and closed geodesics, Ergodic Theory Dyn. Syst., Volume 2 (1982) no. 3-4, pp. 339-365 | DOI | MR | Zbl
[13] The asymptotic geometry of Teichmüller space, Topology, Volume 19 (1980) no. 1, pp. 23-41 | DOI | MR | Zbl
[14] Propriété de Poisson et courbure négative, C. R. Math. Acad. Sci. Paris, Volume 305 (1987) no. 5, pp. 191-194 | Zbl
[15] Topological entropy for geodesic flows, Ann. Math., Volume 110 (1979) no. 3, pp. 567-573 | DOI | MR | Zbl
[16] Harmonic maps, length, and energy in Teichmüller space, J. Differ. Geom., Volume 35 (1992) no. 1, pp. 151-217 | Zbl
[17] Teichmüller geodesics and ends of hyperbolic -manifolds, Topology, Volume 32 (1993) no. 3, pp. 625-647 | DOI | Zbl
[18] Manifolds without conjugate points, Math. Ann., Volume 210 (1974), pp. 295-311 | DOI | MR | Zbl
[19] A characterization of short curves of a Teichmüller geodesic, Geom. Topol., Volume 9 (2005), pp. 179-202 | DOI | Zbl
[20] Thick-thin decomposition for quadratic differentials, Math. Res. Lett., Volume 14 (2007) no. 2, pp. 333-341 | DOI | MR | Zbl
[21] Smoothening cone points with Ricci flow, Bull. Soc. Math. Fr., Volume 143 (2015) no. 4, pp. 619-633 | DOI | MR | Zbl
[22] Two-dimensional manifolds of bounded curvature, Geometry, IV (Encyclopaedia of Mathematical Sciences), Volume 70, Springer, 1993, pp. 3-163 | DOI | MR
[23] An inequality for the entropy of differentiable maps, Bol. Soc. Bras. Mat., Volume 9 (1978) no. 1, pp. 83-87 | DOI | MR | Zbl
[24] The cut locus and distance function from a closed subset of a Finsler manifold, Houston J. Math., Volume 42 (2016) no. 4, pp. 1157-1197 | MR | Zbl
[25] Entropy and systoles on surfaces, Ergodic Theory Dyn. Syst., Volume 26 (2006) no. 5, pp. 1653-1669 | DOI | MR | Zbl
[26] Les surfaces euclidiennes à singularités coniques, Enseign. Math., Volume 32 (1986) no. 1-2, pp. 79-94 | Zbl
[27] Prescribing curvature on compact surfaces with conical singularities, Trans. Am. Math. Soc., Volume 324 (1991) no. 2, pp. 793-821 | DOI | MR | Zbl
[28] Les surfaces à courbure intégrale bornée au sens d’Alexandrov, Géométrie discrète, algorithmique, différentielle et arithmétique (SMF Journée Annuelle), Volume 2009, Société Mathématique de France, 2009, pp. 1-18 | Zbl
Cité par Sources :