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COHOMOLOGY OF THE MODULI SPACE OF
NON-HYPERELLIPTIC GENUS FOUR CURVES

by Mauro FORTUNA

Abstract. — We compute the intersection Betti numbers of the GIT model of
the moduli space of Brill–Noether–Petri general curves of genus four. This space
was shown to be the final non-trivial log canonical model for the moduli space
of stable genus four curves, under the Hassett–Keel program. The strategy of the
cohomological computation relies on a general method developed by Kirwan to
calculate the cohomology of GIT quotients of projective varieties, based on the
equivariantly perfect stratification of the unstable points studied by Hesselink and
others and a partial resolution of singularities.
Résumé. — Nous calculons les nombres de Betti d’intersection du modèle GIT

de l’espace de modules des courbes générales pour Brill–Noether–Petri du genre
quatre. Cet espace s’est révélé être le dernier modèle log canonique non trivial
pour l’espace de modules des courbes stables de genre quatre, dans le cadre du
programme de Hassett et Keel. La stratégie du calcul cohomologique s’appuie sur
une méthode générale développée par Kirwan pour calculer la cohomologie des quo-
tients GIT des variétés projectives, basée sur la stratification équivariante parfaite
des points instables étudiés par Hesselink et autres et une résolution partielle des
singularités.

1. Introduction

Moduli spaces of curves and their geometrically meaningful compactifi-
cations are a central topic in algebraic geometry. In particular, one wants
to understand the topology of these spaces. From that perspective, the pur-
pose of this paper is to compute the intersection Betti numbers of the mod-
uli space of non-hyperelliptic Brill–Noether–Petri-general curves of genus 4.
The canonical model of such curves is a complete intersection of a smooth
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758 Mauro FORTUNA

quadric and a cubic surface in projective space. This moduli space hence
carries a natural compactification:

M := PH0 (P1 × P1,OP1× P1(3, 3)
)
//Aut

(
P1 × P1) ,

as GIT quotient for the space of curves of bidegree (3, 3) on P1 × P1 under
automorphism.
The variety M is a projective birational compactification for the moduli

space of genus 4 curves M4, which is the coarse moduli space associated to
the moduli stackM4. The study of the birational models forMg is the sub-
ject of the Hassett–Keel program (see [11]), which aims at giving a modular
interpretation of the canonical model of the Deligne–Mumford compactifi-
cation Mg. The genus 4 case has attracted a lot of attention as non-trivial
instance of the aforementioned program. Specifically, Fedorchuk [8] proved
that M is the final non-trivial log canonical model for M4, namely

M ∼= M4(α) := Proj
⊕
n> 0

H0
(
n
(
KM4

+ αδ
))

, α ∈
(

8
17 ,

29
60

]
∩Q,

where δ ⊂ M4 is the boundary divisor. In [5] and [6], Casalaina–Martin,
Jensen and Laza described the last steps of the Hassett–Keel program for
log minimal models of M4, arising as VGIT quotients of the parameter
space of (2, 3) complete intersections. On the other hand, Hassett, Hyeon
and Lee (see [12, 13, 14]) proved that the program starts with a divisorial
contraction, followed by a flip and a small contraction and gave a modular
interpretation of the resulting spaces. In conclusion, most of the Hassett–
Keel program for genus 4 is currently known. From our perspective, the
salient point is the two ends of program, namely the Deligne–Mumford
compactification Mg and the GIT quotient for (3, 3) curves.

We are interested in examining these spaces from a cohomological point
of view. The study of the cohomology of moduli spaces of curves is a subject
of great interest in algebraic geometry (see e.g. [7, 22]). For genus 4, one
has a complete understanding of the rational cohomology of the Deligne–
Mumford compactification M4 due to Bergström–Tommasi in [3], and that
of M4 by Tommasi in [24]. The purpose of this paper is to compute the
cohomology at the other end of the Hassett–Keel program, namely the
Betti numbers of M . We want to point out that the cohomology of M and
M4 are in principle related by the wall crossing along the Hassett–Keel
program: we plan to explore this relation in more detail in a future project.
The strategy to compute the intersection Betti numbers of M relies on

a general procedure developed by Kirwan to calculate the cohomology of
GIT quotients (see [15, 16, 17]). The crucial step of that method consists of
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the construction of a partial desingularization M̃ → M , known as Kirwan
blow-up, having only finite quotient singularities, obtained by successively
blowing-up the loci parametrising strictly polystable points in the param-
eter space. Then one is to compute the Hilbert–Poincaré polynomial of M̃
and descend back to the GIT quotient M using the Decomposition Theo-
rem.

Examples of application of Kirwan’s method are the topological descrip-
tions of the moduli space of points on the projective line [23, Section 8], of
K3 surfaces of degree 2 [19] and of hypersurfaces in Pn [18], with explicit
complete computations only in the case of plane curves up to degree 6,
cubic and quartic surfaces. More recently, the procedure has been applied
to compactifications of the moduli space of cubic threefolds [4].
Our result is summarised by the following:

Theorem 1.1. — The intersection Betti numbers of M and the Betti
numbers of the Kirwan blow-up M̃ are as follows:

i 0 2 4 6 8 10 12 14 16 18
dim IHi(M,Q) 1 1 2 2 3 3 2 2 1 1
dimHi(M̃,Q) 1 4 7 11 14 14 11 7 4 1

while all the odd degree (intersection) Betti numbers vanish.

The structure of the paper reflects the steps of Kirwan’s machinery. In
Section 2 we recall the construction of M as GIT quotient X//G together
with the geometrical description of the semistable and stable loci. In Sec-
tion 3, we calculate the equivariant Hilbert–Poincaré polynomial of the
semistable locus Xss in the parameter space of (3, 3) curves (see Propo-
sition 3.4). This is done by computing the Hesselink–Kempf–Kirwan–Ness
(HKKN) stratification of the unstable locus, naturally associated to the
linear action of G on the parameter space X, followed by an excision type
argument. In Section 4, we explicitly construct the partial desingulariza-
tion M̃ →M , by blowing-up three G-invariant loci in the GIT boundary of
M , corresponding to strictly polystable curves (see Definition 4.3). These
subspaces are given by triple conics in P1 × P1, curves with two D4 or
two D8 singularities, called D-curves, and curves with two singularities of
type A5, called A-curves. Section 5 is devoted to the computation of the
rational Betti numbers of the Kirwan blow-up M̃ (see Theorem 5.1). Here
the correction terms arising from the modification process M̃ →M are di-
vided into a main and an extra contribution: the former takes into account
the geometry of the centres of the blow-ups and the latter the action of
G on the exceptional divisors. In the end, the intersection Betti numbers
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760 Mauro FORTUNA

of M are computed in Section 6, as an application of the Decomposition
Theorem (cf. [2]) to the blow-down operations at the level of parameter
spaces (see Theorem 6.1). We conclude with a geometric interpretation of
some Betti numbers, via a description of the classes of curves in the GIT
boundary which generate some cohomology groups.

Notation and conventions

We work over the field of complex numbers and all the cohomology and
homology theories are taken with rational coefficients. The intersection co-
homology will be always considered with respect to the middle perversity
(see [20] for an excellent introduction). For any topological group G, we
will denote by G0 the connected component of the identity in G and by
π0(G) := G/G0 the finite group of connected components of G. The uni-
versal classifying bundle of G will be denoted by EG → BG. If G acts on
a topological space Y , its equivariant cohomology (see [1]) will be defined
to be H∗G(Y ) := H∗(Y ×G EG). The Hilbert–Poincaré series is denoted by

Pt(Y ) :=
∑
i> 0

ti dimHi(Y ),

and analogously for the intersection and equivariant cohomological theories.
If F is a finite group acting on a vector space A, then AF will indicate the
subspace of elements in A fixed by F .

Acknowledgements

I wish to thank my advisor Klaus Hulek who proposed me this problem,
for many helpful discussions and suggestions. I am also grateful to Yano
Casalaina–Martin, Radu Laza and Orsola Tommasi for useful conversations
and correspondence and to all the authors of [4] for kindly sharing a preprint
version of it with me. Finally, I would like to thank the anonymous referee
whose comments improved the presentation of this paper.

2. Background on GIT for (3, 3) curves in P1 × P1

A smooth non-hyperelliptic curve of genus 4 is realised by the canonical
embedding as a complete intersection of a quadric and a cubic surface in
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the projective space P3. If the quadric is smooth, the curve is said to be
Petri-general and thus defines a point in the complete linear system

(2.1)
X : = PH0 (P1 × P1,OP1× P1(3, 3)

)
= P

(
Sym3(C2)∨ ⊗ Sym3(C2)∨

) ∼= P15

of curves of bidegree (3, 3) on P1 × P1. Since every such curve admits a
unique pair of g1

3 systems, it follows that these curves are abstractly iso-
morphic as algebraic curves if and only if they lie in the same Aut(P1×P1)-
orbit.
We consider the reductive group G := (SL(2,C) × SL(2,C)) o Z/2Z,

which is only isogenus to Aut(P1×P1) = PO(4,C), but has the advantage to
define a linearisation of the hyperplane bundle of X. We will work with this
linearisation throughout all the results. The action of G on X is induced by
the natural action of SL(2,C)×SL(2,C) on P1×P1 via change of coordinates
and the Z/2Z-extension interchanges the rulings of P1 × P1. Geometric
Invariant Theory [23] provides a good categorical projective quotient

(2.2) M := X//OX(1)G,

whose cohomology we aim to compute. In particular, intersection cohomol-
ogy satisfies Poincaré duality, allowing us to compute the Betti numbers
up to dimension 9 = dimM . However, we prefer to carry out the compu-
tations in all dimensions for the sake of completeness, and to report also
the results mod t10 for the sake of readability.

Firstly, we need a description of the semistability condition for non-
hyperelliptic Petri-general curves of genus 4. This is provided by the fol-
lowing

Theorem 2.1 ([8, Section 2.2]). — A curve C is unstable (i.e. non-
semistable) for the action of (SL(2,C) × SL(2,C)) o Z/2Z on PH0

(P1 × P1,OP1×P1(3, 3)) if and only if one of the following holds:
(i) C contains a double ruling;
(ii) C contains a ruling and the residual curve C ′ intersects this ruling

in a unique point that is also a singular point of C ′.

The GIT boundary M rMs consisting of strictly polystable points is
described by the following

Theorem 2.2 ([8, Section 2.2] and [6, Section 3.7]). — The strictly
polystable curves for the action of (SL(2,C) × SL(2,C)) o Z/2Z on PH0

(P1 × P1,OP1×P1(3, 3)) fall into four categories:
(i) Triple conics;

TOME 71 (2021), FASCICULE 2
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(ii) Unions of a smooth double conic and a conic that is nonsingular
along the double conic. These form a one-dimensional family;

(iii) Unions of three conics meeting in two D4 singularities. These form
a two-dimensional family;

(iv) Unions of two lines of the same ruling, meeting the residual curve
in two A5 singularities.

3. Equivariant stratification and Hilbert–Poincaré series

In this section, we discuss the first step of Kirwan’s method to compute
the cohomology of GIT quotients. It consists of an equivariant stratification
of the parameter space measuring the instability of every point under the
group action (cf. Theorem 3.1). This stratification turns out to be perfect,
in the sense that the Betti numbers of all strata sum up to the cohomology
of the whole parameter space (cf. Theorem 3.2). We then apply these results
to our case of Brill–Noether–Petri-general curves of genus 4, and we obtain
in Proposition 3.4 the equivariant Betti numbers of the semistable locus.

3.1. The HKKN stratification

From the results in [15], the first step in Kirwan’s procedure is to con-
sider the Hesselink–Kempf–Kirwan–Ness (HKKN) stratification of the pa-
rameter space, which, from a symplectic viewpoint, coincides to the Morse
stratification for the norm-square of an associated moment map.
In general, let X ⊂ Pn be a complex projective manifold, acted on by a

complex reductive group G, inducing a linearisation on the very ample line
bundle L = OPn(1)|X . We pick a maximal compact subgroupK ⊂ G, whose
complexification gives G, and a maximal torus T ⊂ G, such that T ∩K is a
maximal compact torus of K. Before describing the stratification, we need
also to fix an inner product together with the associated norm ‖.‖ on the
dual Lie algebra t∨ := Lie(T ∩K)∨, e.g. the Killing form, invariant under
the adjoint action of K.

Theorem 3.1 ([15]). — In the above setting, there exists a natural
stratification of X

(3.1) X =
⊔
β ∈B

Sβ

ANNALES DE L’INSTITUT FOURIER
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by G-invariant locally closed subvarieties Sβ , indexed by a finite partially
ordered set B ⊂ Lie(T ∩ K) such that the minimal stratum S0 = Xss is
the semistable locus of the action and the closure of Sβ is contained in⋃
γ> β Sγ , where γ > β if and only if γ = β or ‖γ‖ > ‖β‖.

We briefly sketch the construction of the strata appearing in the previous
Theorem 3.1 (see [15] for a detailed description). Let {α0, . . . , αn} ⊂ t∨

be the weights of the representation (a.k.a. the linearisation) of G on Cn+1

and identify t∨ with t via the invariant inner product. After choosing a
positive Weyl chamber t+, an element β ∈ t̄+ belongs to the indexing set
B of the stratification if and only if β is the closest point to the origin of
the convex hull of some non-empty subset of {α0, . . . , αn}. We define Zβ
to be the linear section of X

Zβ :=
{

(x0 : . . . : xn) ∈ X : xi = 0 if αi.β 6= ‖β‖2
}
.

The stratum indexed by β is then

Sβ := G · Ȳβ r
⋃

‖γ‖> ‖β‖

G · Ȳγ ,

where

Ȳβ :=
{

(x0 : . . . : xn) ∈ X : xi = 0 if αi.β < ‖β‖2
}
.

The heart of Kirwan’s results in [15] is the proof that the equivariant
Betti numbers of the strata sum up to the cohomology of the whole space.

Theorem 3.2 ([15, 8.12]). — The stratification {Sβ}β ∈B, constructed
in Theorem 3.1, is G-equivariantly perfect, namely it holds

(3.2) PGt (Xss) = PGt (X)−
∑

0 6= β ∈B

t2 codim(Sβ)PGt (Sβ).

Remark 3.3. — If we denote by Stabβ ⊂ G the stabiliser of β ∈ t under
the adjoint action of G, the equivariant Hilbert–Poincaré series of each
stratum is

PGt (Sβ) = P Stab β
t

(
Zssβ
)
,

where Zssβ is the set of semistable points of Zβ with respect to an appro-
priate linearisation of the action of Stabβ (cf. [15, 8.11]).

3.2. Stratification for (3, 3) curves in P1 × P1

We now come back to our case described in the Section 2. We apply
Kirwan’s results of the previous subsection to prove the following:

TOME 71 (2021), FASCICULE 2
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Proposition 3.4. — The G-equivariant Hilbert–Poincaré series of the
semistable locus is

PGt (Xss) = 1 + t2 + t4 + t6 + 2t8 + 2t10 + t12 − t14 − t16 − t18 − t20 − t22

1− t4
≡ PGt (X) ≡ 1 + t2 + 2t4 + 2t6 + 4t8 mod t10.

We need to start computing the equivariant Hilbert–Poincaré series PGt
(X). Since X is compact, its equivariant cohomology ring is the invariant
part under the action of π0(G) = Z/2Z of H∗G0(X), which splits into the
tensor product H∗(BG0)⊗H∗(X) (see [15, 8.12]). Then

H∗G(X) = H∗G0(X)Z/2Z

=
(
H∗
(
B (SL(2,C)× SL(2,C))

)
⊗H∗

(
P15) )Z/2Z

=
(
Q[c1, c2]⊗Q[h]/

(
h16))Z/2Z

.

In fact H∗(B SL(2,C)) ∼= Q[c], where c has degree 4, and H∗(Pn)
= Q[h]/(hn+1), with deg(h)=2. The extension Z/2Z acts by interchang-
ing c1 and c2, while it fixes the hyperplane class h ∈ H2(P15). Therefore
the ring of invariants is generated by c1 + c2, c1c2 and h:

H∗G(X) = Q[c1 + c2, c1c2]⊗Q[h]/
(
h16) .

Since deg(c1 + c2)=4 and deg(c1c2)=8, we have:

(3.3)
PGt (X) = 1 + t2 + · · ·+ t30

(1− t4)(1− t8)
≡ 1 + t2 + 2t4 + 2t6 + 4t8 mod t11.

According to Theorem 3.2, we need to subtract the contributions coming
from the unstable strata. In our case, the indexing set B of the stratification
can be visualised by means of the Figure 3.1, called Hilbert diagram.

There are 16 black nodes in this square, and each of these nodes repre-
sents a monomial xi0x3−i

1 yj0y
3−i
1 in H0(P1 × P1,OP1× P1(3, 3)), for 0 6 i, j

6 3. This square is simply the diagram of weights αI = α(i, j) of the repre-
sentation of G on H0(P1 × P1,OP1× P1(3, 3)) with respect to the standard
maximal torus T := (diag(a, a−1),diag(b, b−1), 1) in G. Each of the nodes
denotes a weight of this representation, namely

(3.4) xi0x
3−i
1 yj0y

3−j
1 ↔ (3− 2i, 3− 2j), for i, j = 0, . . . , 3.

There is a non-degenerate inner product (the Killing form) defined in the
Cartan subalgebra t := Lie(T ∩ (SU(2,C) × SU(2,C))) in Lie(SU(2,C) ×
SU(2,C))⊗ C ∼= Lie(G). Using this inner product, we can identify the Lie
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Figure 3.1. Hilbert diagram. The circled dots describe the indexing set
B. The two lines pass through the weights of strictly semistable points
(see Proposition 4.1).

algebra t with its dual t∨, and the above square can be thought of as lying
in t. The axes of the Hilbert diagram thus coincide with the Lie algebras
of the two factors of the maximal compact torus.

The Weyl group W (G) := N(T )/T ∼= (Z/2Z × Z/2Z) n Z/2Z coincides
with the dihedral group D8 of all symmetries of the square. It operates
on the Hilbert diagram as follows: the first two involutions are reflections
along the axes, while the third one is along the principal diagonal. It is easy
to see that the grey region is the portion of the square which lies inside a
fixed positive Weyl chamber t+.
By definition, the indexing set B consists of vectors β such that β lies in

the closure t̄+ of the positive Weyl chamber and is also the closest point
to the origin of a convex hull spanned by a non-empty set of weights of
the representation of G on H0(P1×P1,OP1× P1(3, 3)). In this situation, we
may assume that such a convex hull is either a single weight or it is cut out
by a line segment joining two weights, which will be denoted by 〈β〉 (see
Figure 3.1).
The codimension d(β) of each stratum Sβ ⊂ X is equal to (see [18, 3.1])

(3.5) d(β) = n(β)− dimG/Pβ ,

TOME 71 (2021), FASCICULE 2
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where n(β) is the number of weights αI such that β · αI < ‖β‖2, i.e. the
number of weights lying in the half-plane containing the origin and defined
by β. Moreover, let Pβ ⊆ G be the subgroup of elements inG which preserve
Ȳβ , then Pβ is a parabolic subgroup, whose Levi component is the stabiliser
Stabβ of β ∈ t under the adjoint action of G.

All the contributions coming from the unstable strata are summarised in
Table 3.1 and were computed looking at the Figure 3.1.

weights in 〈β〉 n(β) Stabβ 2d(β) PGt (Sβ)
(3,−3) 15 〈T, ι〉 26 (1− t2)−1(1− t4)−1

(3,−1), (1,−3) 13 〈T, ι〉 22 (1− t2)−1

(3, 1), (1,−1), 10 〈T, ι〉 16 (1 + t2 − t6)(1− t2)−1

(−1,−3) (1− t4)−1

(1,−3), (3, 1) 12 T 20 (1− t2)−1

(3, 3), (1,−1) 10 T 16 (1− t2)−1

(1, 1), (−1,−3) 8 T 12 (1− t2)−1

(3,−1) 14 T 24 (1− t2)−2

(1,−3), (3, 3) 11 T 18 (1− t2)−1

(−1,−3), (3, 3) 9 T 14 (1− t2)−1

(3,−3), (3,−1), 12 C∗ × SL(2,C) 22 (1− t2)−1
(3, 1), (3, 3)

(1,−3), (1,−1), 8 C∗ × SL(2,C) 14 (1− t2)−1
(1, 1), (1, 3)

Table 3.1. Cohomology of the unstable strata.

The element
ι :=

((
0 1
−1 0

)
,

(
0 −1
1 0

)
,−1

)
is a generator of 〈T, ι〉 ∼= (C∗)2oZ2, with automorphism (a, b)↔ (b−1, a−1),
which is a double cover of the maximal torus T . For every β ∈ B, the first
column of Table 3.1 shows the weights contained in the segment 〈β〉 orthog-
onal to the vector β ∈ t (see Figure 3.1): then via the correspondence (3.4)
one can obtain an explicit geometrical interpretation of the curve con-
tained in each unstable stratum. The terms appearing in the second, third
and fourth columns are determined easily from the Hilbert diagram. The
computations in the last column follow from applying Theorem 3.2 to the
action of Stabβ on Zβ , in order to compute the equivariant cohomology of
each unstable stratum P Stab β

t (Zssβ ) = PGt (Sβ) (see Remark 3.3).
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We shall discuss some of these cases below.

Lemma 3.5. — There are exactly six unstable strata indexed by β, as
listed in Table 3.1, such that Zβ ∼= P1, and their equivariant Hilbert–
Poincaré series is PGt (Sβ) = (1− t2)−1.

Proof. — Looking at Figure 3.1, there are 6 unstable strata indexed by
β ∈ B such that the segment 〈β〉 orthogonal to the vector β contains two
weights that generate the line Zβ ⊂ X. As summarised in Table 3.1, in five
of these cases the stabiliser Stabβ is isomorphic to the maximal torus T
and hence by Remark 3.3

PGt (Sβ) = 1 + t2

(1− t2)2 −
2t2

(1− t2)2 = 1
1− t2 .

In the remaining case, corresponding to the second row of Table 3.1, the
stabiliser is Stabβ ∼= 〈T, ι〉 and the cohomology of the corresponding stra-
tum is

PGt (Sβ) = 1 + t2

(1− t2)(1− t4) −
t2

(1− t2)2 = 1
1− t2 . �

Lemma 3.6. — There is exactly one unstable stratum indexed by β, as
listed in Table 3.1, such that Zβ ∼= P2, and its equivariant Hilbert–Poincaré
series is PGt (Sβ) = (1 + t2 − t6)(1− t2)−1(1− t4)−1.

Proof. — The case under consideration corresponds to the third row of
Table 3.1, where the segment orthogonal to β contains three weights span-
ning Zβ ∼= P2. Hence and by Theorem 3.2 the equivariant cohomological
series of the correspondent stratum is

PGt (Sβ) = 1 + t2 + t4

(1− t2)(1− t4) −
t4

(1− t2)2 = 1 + t2 − t6

(1− t2)(1− t4) . �

Lemma 3.7. — There are exactly two unstable strata indexed by β,
as listed in Table 3.1, such that Zβ ∼= P3, and their equivariant Hilbert–
Poincaré series is PG(Sβ) = (1− t2)−1.

Proof. — The cases under consideration correspond to the last two rows
of Table 3.1, where the segment orthogonal to β contains four weights
spanning a P3. The linear subspace Zβ is acted on by the group Stabβ
= C∗ × SL(2,C). The first factor is central and acts trivially on Zβ , while
the action of the second factor can be identified with the action on the
space Sym3 P1 ∼= P3 of binary cubic forms by change of coordinates. This
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leads to

PG(Sβ) = Pt(BC∗)PSL(2,C)
t

((
Sym3 P1)ss)

= Pt(BC∗)P (M0, 3) = 1
1− t2 . �

The remaining two cases, that is when Zβ ∼= P0, are easier and left to
the reader.
We are finally ready to prove Proposition 3.4:
Proof of Proposition 3.4. — According to Theorem 3.2, we need to sub-

tract all the contributions of the unstable strata, appearing in Table 3.1,
to the G-equivariant cohomology of X computed in (3.3). �

4. Kirwan blow-up

In this section we recall the general construction of the Kirwan blow-up
of a GIT quotient which provides an orbifold resolution of singularities.
It is achieved by stratifying the GIT boundary X//G \ Xs//G in terms of
the connected components R of the stabilisers of the associated polystable
orbits. Then, one proceeds by blowing-up these strata according to the
dimension of the corresponding R. In our situation, the Kirwan blow-up
M̃ →M is obtained by blowing-up three loci of strictly polystable points,
geometrically described in Theorem 2.2 (see also Proposition 4.2).

4.1. General setting

In general the equivariant cohomology H∗G(Xss) of the semistable locus
does not coincide with the cohomology H∗(X//G) of the GIT quotient,
unless in the case when all semistable points are actually stable. This is
not the case for us. The solution is given by constructing a partial resolution
of singularities X̃//G → X//G, known as Kirwan blow-up [16], for which
the group G acts with finite isotropy groups on the semistable points X̃ss.
We briefly describe how it is constructed.
We consider again the setting, as in Section 3.1, of a smooth projec-

tive manifold X ⊂ Pn acted on by a reductive group G. We also assume
throughout the paper that the stable locus Xs 6= ∅ is non-empty. In or-
der to produce the Kirwan blow-up, we need to study the GIT boundary
X//G r Xs//G and stratify it in terms of the isotropy groups of the as-
sociated semistable points. More precisely, let R be a set of representa-
tives for the conjugacy classes of connected components of stabilisers of
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strictly polystable points, i.e. semistable points with closed orbits, but infi-
nite stabilisers. Let r be the maximal dimension of the groups in R, and let
R(r) ⊆ R be the set of representatives for conjugacy classes of subgroups
of dimension r. For every R ∈ R(r), consider the fixed locus

(4.1) ZssR := {x ∈ Xss : R fixes x} ⊂ Xss.

Kirwan showed [16, Section 5] that the subset⋃
R∈R(r)

G · ZssR ⊂ Xss

is a disjoint union of smooth G-invariant closed subvarieties in Xss. Now let
π1 : X1 → Xss be the blow-up of Xss along

⋃
R∈R(r) G · ZssR and E ⊂ X1

be the exceptional divisor.
Since the centre of the blow-up is invariant under G, there is an in-

duced action of G on X1, linearised by a suitable ample line bundle. If
L = OPn(1)|X is the very ample line bundle on X linearised by G, then
there exists d � 0 such that L1 := π∗1L

⊗d ⊗ OX1(−E) is very ample and
admits a G-linearisation (see [16, 3.11]). After making this choice, the set
R1 of representatives for the conjugacy classes of connected components of
isotropy groups of strictly polystable points in X1 will be strictly contained
in R (see [16, 6.1]). Moreover, the maximum among the dimensions of the
reductive subgroups in R1 is strictly less than r. Now we restrict to the
new semistable locus Xss

1 ⊂ X1, so that we are ready to perform the same
process as above again.
After at most r steps, we obtain a finite sequence of modifications:

(4.2) X̃ss := Xss
r → . . . → Xss

1 → Xss,

by iteratively restricting to the semistable locus and blowing-up smooth
invariant centres (cf. [16, 6.3]).
Therefore, in the last step, X̃ss is equipped with a G-linearised ample

line bundle such that G acts with finite stabilisers. In conclusion, we have
the diagram

(4.3)
X̃ss Xss

X̃//G X//G,

where the Kirwan blow-up X̃//G, having at most finite quotient singular-
ities, gives a partial desingularization of X//G, which in general has worse
singularities.
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4.2. Kirwan blow-up for (3, 3) curves in P1 × P1

Coming back to our case, we need to find the indexing setR of the Kirwan
blow-up and the corresponding spaces ZssR , for all R ∈ R. Namely, one must
compute the connected components of the identity in the stabilisers among
all the four families of polystable curves listed in Theorem 2.2. Compared
to [8, Section 2.2], we provide a more explicit, but equivalent, way to find
the indexing set R, which has also the advantage to compute ZR and ZssR .
We must find which non-trivial connected reductive subgroups R ⊂ G

fix at least one semistable point. Firstly, since R is connected, R must
be contained in G0 = SL(2,C) × SL(2,C). Secondly, since we are inter-
ested only in the conjugacy class of R, we may assume that its intersection
TR := R ∩ T with the maximal torus is a maximal torus of R and R ∩
(SU(2,C)× SU(2,C)) is a maximal compact subgroup. Since 0 ∈ t is not a
weight, it follows that T ∼= (C∗)2 fixes no semistable points. Therefore TR
is a subtorus of rank one.
The fixed point set ZssR in Xss consists of all semistable points whose

representatives in H0(P1 × P1,OP1× P1(3, 3)) ∼= C16 are fixed by the linear
action of R. Thus Fix(TR,C16) is spanned by those weight vectors which
lie on a line through the centre of the Hilbert diagram and orthogonal to
the Lie subalgebra Lie(TR∩ (SU(2,C)×SU(2,C))) ⊂ t. Up to the action of
a suitable element of the Weyl group W (G), we can assume that the line
passes through the chosen closed positive Weyl chamber t̄+. We have only
two possibilities, see Figure 3.1.
Therefore we proved the following

Proposition 4.1. — If R ∈ R is a subgroup in the indexing set of
Kirwan’s partial resolution, let TR denote the maximal torus of R and let
ZssR denote the fixed-point set of R in Xss. Then, up to conjugation, there
are two possibilities for TR and ZssR :

(i) TR = T1 := {(diag(t, t−1),diag(t, t−1), 1) : t ∈ C∗} and ZssR is
contained in the projective space

P
{
ax3

0y
3
1 + bx2

0x1y0y
2
1 + cx0x

2
1y

2
0y1 + dx3

1y
3
0
} ∼= P3

spanned by the polynomials

x3
0y

3
1 , x

2
0x1y0y

2
1 , x0x

2
1y

2
0y1 and x3

1y
3
0 .

(ii) TR = T2 := {(diag(t, t−1),diag(t3, t−3), 1) : t ∈ C∗} and ZssR is con-
tained in the projective space P{ax3

0y0y
2
1 + bx3

1y
2
0y1} ∼= P1 spanned

by the polynomials x3
0y0y

2
1 and x3

1y
2
0y1.
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We start analysing the second case (ii). We can easily see from the charac-
terisation of semistable points (Theorem 2.2) that all the semistable curves
are given by y0y1(ax3

0y1 + bx3
1y0) with a 6= 0 and b 6= 0. Geometrically

these curves contains two lines of the same ruling and the residual curve
intersects them in 2 points, giving 2 singularities of type A5. We will call
these curves as A-curves. Their singular points are ((0 : 1), (0 : 1)) and
((1 : 0), (1 : 0)) in P1 × P1; see the Figure 4.1.

A5

A5

Figure 4.1. Curve with 2A5 singularities.

By rescaling the variables x0 and x1, all the semistable A-curves are
equivalent to the curve C2A5 defined by

C2A5 :=
{
FC2A5

:= y0y1
(
x3

0y1 + x3
1y0
)

= 0
}
.

Through this geometric description, it is now easy to show that in this
case actually R = TR. We recall that R is the connected component of the
identity in the stabiliser of the A-curves: up to conjugation, we can think
just of C2A5 . Yet every element of R, stabilising the point correspond-
ing to C2A5 in X, will induce an automorphism of C2A5 , which a fortiori
must preserve the singular locus. Therefore every element of R must fix
((0 : 1), (0 : 1)) and ((1 : 0), (1 : 0)) or interchange them. Hence

R ⊆ T t
{((

0 α

−α−1 0

)
,

(
0 β

−β−1 0

)
, 1
)

: α, β ∈ C∗
}
⊆ G.

From the connectedness of R, it follows R ⊆ T , hence R = T ∩ R =
TR = T2.
Now we analyse the first case. We can easily see via the Hilbert–Mumford

numerical criterion [23, 2.1] that all the semistable curves are given by

ax3
0y

3
1 + bx2

0x1y0y
2
1 + cx0x

2
1y

2
0y1 + dx3

1y
3
0 = 0,
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where (a, b) are not simultaneously zero and (c, d) are not simultaneously
zero, i.e. ZssT1

= P3 r {a = b = 0, c = d = 0}. Moreover we can write every
curve

ax3
0y

3
1 + bx2

0x1y0y
2
1 + cx0x

2
1y

2
0y1 + dx3

1y
3
0 = L1L2L3;

Li = αix0y1 + βix1y0, (αi : βi) ∈ P1, i = 1, 2, 3.

as the union of three conics in the class (1, 1), all meeting at points
((0 : 1), (0 : 1)) and ((1 : 0), (1 : 0)) in P1 × P1. We find three cases
depending on how many Li’s coincide.

(i) Assume that all the Li coincide, namely the curve is a triple conic,
which turns out to be equivalent to 3C, defined by

3C :=
{
F3C := (x0y1 − x1y0)3 = 0

}
.

This curve is nothing but a triple line P1 ⊂ P1 × P1 diagonally
embedded. Thus its stabiliser in PGL(2,C)×PGL(2,C) is PGL(2,C)
diagonally embedded, too. We get a non-splitting central extension
of groups:

(4.4) 1→ µ2 × µ2 → H → PGL(2,C)→ 1,

where H := {(A,±A) : A ∈ SL(2,C)} is the stabiliser of 3C in G0,
that is to say the preimage of PGL(2,C) under the natural homo-
morphism G0 = SL(2,C)×SL(2,C)→ PGL(2,C)×PGL(2,C). Here
µ2×µ2 must be thought as the subgroup {(±I,±I), (±I,∓I)} ⊂ H.
Therefore we find the indexing subgroup R = SL(2,C) diagonally
embedded in G0 and the associated spaces ZR = ZssR = {3C} are
one point.

(ii) Assume that two Li coincide and the third one does not. The
semistable curves of this type are unions of a smooth double conic
and a conic that is nonsingular along the double conic. They inter-
sect at the points ((0 : 1), (0 : 1)) and ((1 : 0), (1 : 0)), which consist
of singularities of type D8; see Figure 4.2.

D8

D8

D8

D8

Figure 4.2. Curves with 2D8 singularities.

ANNALES DE L’INSTITUT FOURIER



MODULI SPACE OF NON-HYPERELLIPTIC GENUS 4 CURVES 773

Now we can argue like in the case of C2A5 , noticing that ev-
ery element of R must preserve the D8 singular points. Therefore
R ⊆ T , so that R = T1.

(iii) Assume all the Li are distinct from each other. The semistable
curves of this kind are unions of three conics meeting in two D4
singularities. These singular points are again ((0 : 1), (0 : 1)) and
((1 : 0), (1 : 0)); see Figure 4.3.

D4

D4

Figure 4.3. Curve with 2D4 singularities.

Arguing once more as before, we find that R = T1.
In conclusion, we proved the following:

Proposition 4.2. — The indexing set R of the Kirwan blow-up, such
as the fixed loci ZssR , for (3, 3) curves in P1×P1, can be described as follows:

(i) RC := SL(2,C), diagonally embedded in G0, and in this case ZRC =
ZssRC = {3C} is the triple conic.

(ii) RD := {(diag(t, t−1),diag(t, t−1), 1) : t ∈ C∗} ∼= C∗ and in this case

ZssRD

= P
{
ax3

0y
3
1 + bx2

0x1y0y
2
1 + cx0x

2
1y

2
0y1 + dx3

1y
3
0
}
r{a = b = 0, c = d = 0}

is the set of D-curves.
(iii) RA := {(diag(t, t−1),diag(t3, t−3), 1) : t ∈ C∗} ∼= C∗ and in this

case ZssRA = P{ax3
0y0y

2
1 + bx3

1y
2
0y1} r {a = 0, b = 0} is the set of

A-curves.
Moreover, the following holds:

RD ⊂ RC , RA ∩RC = {(±I,±I, 1)} ,
G · ZssRC ⊂ G · Z

ss
RD , G · Z

ss
RA ∩G · Z

ss
RD = ∅.

We recall that the Kirwan’s partial desingularization process consists of
successively blowing-up Xss along the (strict transforms of the) loci G ·ZssR
in order of dimR, to obtain the space X̃ss, and then taking the induced
GIT quotient X̃//G with respect to a suitable linearisation.
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In our situation, we get the diagram

X̃ss =

(
BlG·Zss

RA
Xss

2

)ss
��

// Xss
2 =

(
BlG·Zss

RD, 1
Xss

1

)ss
// Xss

1 =
(

BlG·Zss
RC

Xss
)ss

// Xss

��
M̃ // M.

The space X̃ss is obtained by firstly blowing up the orbit of the triple
conic G · ZssRC , followed by the blow-up of G · ZssRD, 1, namely the strict
transform of the locus of D-curves G · ZssRD under the first bow-up. In the
end we need to blow-up the orbit G ·ZssRA of C2A5 . We also observe that the
third blow-up commutes with the other two, because the orbit of A-curves
is disjoint from the locus of D-curves. Thus we find:

Definition 4.3. — The Kirwan blow-up M̃ := X̃//G → M is defined
as the GIT quotient of the blown-up variety X̃ss constructed above.

Intrinsically at the level of moduli spaces, M̃ is obtained by first blowing
up the point G·ZssRC//G corresponding to triple conics, then the strict trans-
form BlG·Zss

RC
//G(G ·ZssRD//G) of the surface corresponding to the D-curves

and eventually blowing up the point G ·ZRA//G of A-curves. Nevertheless,
for computational reasons, we will prefer the first description.

5. Cohomology of the Kirwan blow-up

This Section is devoted to the proof of

Theorem 5.1. — The Hilbert–Poincaré polynomial of the Kirwan blow-
up M̃ is

Pt(M̃) = 1 + 4t2 + 7t4 + 11t6 + 14t8 + 14t10 + 11t12 + 7t14 + 4t16 + t18.

In the first part of the Section, we recall the general theory to compute
the Betti numbers of the Kirwan blow-up X̃//G→ X//G of a GIT quotient.
Since X̃//G has only finite quotient singularities, its rational cohomology
coincides with the equivariant cohomology of the semistable locus X̃ss,
which in turn can be computed from the equivariant cohomology of Xss

corrected by an error term (see Theorem 5.2). This error term is divided
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into a main and extra contribution: the former takes into account the ge-
ometry of the centres of the blow-ups and the latter the action of G on the
exceptional divisors.
In the second and third part of this Section, we complete the computa-

tion of the Betti numbers of M̃ by calculating the main and extra terms
appearing in Theorem 5.2 for our case. This concludes the proof of Theo-
rem 5.1.

5.1. General setting

The effect of the desingularization on the equivariant Poincaré series is
explained in [16]. We consider again the setting, as in Section 4.1, of a non-
singular projective variety X together with a linear action of a reductive
group G. Assume that R is a connected reductive subgroup with the prop-
erty that the fixed point set ZssR ⊂ Xss is non-empty, but that ZssR′ = ∅
for all higher subgroups R′ ⊂ G of higher dimension than R.

Let π : X̂ → Xss be the blow-up of Xss along G · ZssR . Then the equi-
variant cohomology of X̂ is related to that of the exceptional divisor E
by

(5.1) H∗G(X̂) = H∗G(Xss)⊕H∗G(E)/H∗G (G · ZssR )

(see [10, Section 4.6], [16, 7.2]). If NR denotes the normal bundle to G ·
ZssR in Xss, then the equivariant cohomology of the exceptional divisor E
= PNR can be computed via a degenerating spectral sequence, namely

H∗G(E) = H∗G (G · ZssR )
(

1 + · · ·+ t2(rkNR−1)
)
.

Kirwan proved ([16, 5.10]) that G · ZssR is algebraically isomorphic to
G×N(R)Z

ss
R , whereN(R) ⊂ G is the normaliser of R, hence we can compute

(5.2)
rkNR = dimX − dimG · ZssR

= dimX − (dimG+ dimZssR − dimN(R))

and
H∗G(G · ZssR ) = H∗N(R)(ZssR ).

Therefore from (5.1), it follows that

PGt (X̂) = PGt (Xss) + P
N(R)
t (ZssR )

(
t2 + . . . + t2(rkNR−1)

)
.

If we consider the HKKN stratification {Sβ}β inB associated to the induced
action of G on X̂ (see Theorem 3.1), we can apply Theorem 3.2 to deduce
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the equivariant Hilbert–Poincaré series of the semistable locus:

(5.3) PGt (X̂ss) = PGt (X̂)−
∑

0 6= β ∈ B̂

t2 codim(Ŝβ)PGt (Ŝβ).

To use this formula, we have to determine the indexing set B̂. For this,
we choose a point x ∈ ZssR and consider the normal vector space NR

x to
G ·ZssR in Xss at this point. Since the action of R on Xss keeps this point
x fixed, there is a natural induced representation ρ : R→ GL(NR

x ) of R on
this vector space. Let B(ρ) denote the indexing set of the stratification of
the R-action on the projective slice PNR

x . For each β′ ∈ B(ρ), we have the
subspaces Zβ′, ρ, Zssβ′, ρ and Sβ′,ρ defined as in Section 3.1 but with respect
to the action of R on PNR

x .
In [16, Section 7], it is proven that B̂ can be identified with a subset of

B(ρ). Given β ∈ B̂, the Weyl group orbit W (G) of β decomposes into a
finite number of W (R) orbits. There is a unique β′ ∈ B(ρ) in each W (R)
orbit contained in the W (G) orbit of β. We thus denote by w(β′, R,G) the
number of β′ ∈ B(ρ) lying in the Weyl group orbit W (G) · β.
For each β′ ∈ B̂ ⊂ B(ρ), there is an (N(R)∩Stabβ′)-equivariant fibration

π : Zssβ′, R := Zssβ′ ∩ π−1(ZssR )→ ZssR

with all fibres isomorphic to Zssβ′, ρ. As for each stratum Ŝβ′ , its codimen-
sion in X̂ is the same as the codimension of Ŝβ′, ρ in PNR

x , denoted by
d(PNR, β′) and its Hilbert–Poincaré series PGt (Ŝβ′) is the same as

P
N(R)∩ Stab β
t

(
Zssβ′, R

)
.

A repeated application of this argument leads to a formula to compute in-
ductively the equivariant cohomologyH∗G(X̃ss) of the semistable locus X̃ss,
whose GIT quotient gives the Kirwan blow-up. Since G acts on X̃ss with fi-
nite stabilisers, its equivariant Hilbert–Poincaré polynomial coincides with
that of the partial desingularization X̃//G. We summarise all the previous
considerations under the following

Theorem 5.2 ([16, 7.4]). — In the above setting, the cohomology of
the Kirwan blow-up is given by:

Pt

(
X̃//G

)
= PGt

(
X̃ss

)
= PGt (Xss) +

∑
R∈R

AR(t),
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where the error term AR(t) can be divided into main and extra terms, as
follows:

AR(t) = PNt (ZssR )
(
t2 + · · ·+ t2(rkNR−1)

)
(Main term)

−
∑

0 6= β′ ∈B(ρ)

1
w (β′, R,G) t

2d(PNR, β′)PN ∩ Stab β′

t

(
Zssβ′, R

)
.(Extra term)

Remark 5.3 (cf. [16, 7.2] and [19, 4.1(4)]). — If Zssβ′, ρ = Zβ′, ρ, the spec-
tral sequence of rational equivariant cohomology associated to the fibration
π : Zssβ′, R → ZssR degenerates and hence

PN ∩ Stab β′

t (Zssβ′, R) = PN ∩ Stab β′

t (ZssR ) · Pt(Zβ′, ρ).

Due to the role they play in the aforementioned results, we compute the
normalisers of the reductive subgroups in R.

Proposition 5.4. — The normalisers of the reduprop5.4.1ctive sub-
groups in R = {RC , RD, RA} are given as follows

(i) N(RC) = HoZ/2Z ⊂ G, where H = {((A,±A), 1) : A ∈ SL(2,C)}
fits into the central extension (4.4):

1→ µ2 × µ2 → H → PGL(2,C)→ 1,

and the semidirect product structure descends from that of G.
(ii) N(RD) = S o Z/2Z ⊂ G, where S is the subgroup of some gener-

alised permutation matrices, namely

S = T t
{((

0 α

−α−1 0

)
,

(
0 β

−β−1 0

)
, 1
)

: α, β ∈ C∗
}
⊆ G,

and the semidirect product structure descends from that of G.
(iii) N(RA) = S, as above.

Proof. — The proof of (ii) and (iii) is straightforward from the definition
of normaliser.

In the case (i), we prove that the normaliser N ′ of RC in G0 = SL(2,C)
× SL(2,C) is H, then the statement will follow from the symmetry of RC .
Since RC has index two in H, it is normal in H, hence H ⊆ N ′. For the
converse, we need:

Claim 5.5. — For every n ∈ N ′, there exists a g ∈ RC with gn ∈ T∩N ′,
where T is the maximal torus.

Indeed, any element n ∈ N ′ must conjugate the standard maximal torus
RD ⊂ RC . Since all the maximal tori in RC are conjugate under the action
of RC , it follows that there must exists a g′ ∈ RC such that ñ = g′n fixes
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the maximal torus RD, that is to say ñ belongs to the normaliser S of RD
in G0. If ñ := g′n ∈ T , just take g = g′. Otherwise ñ ∈ σT , where

σ :=
((

0 1
−1 0

)
,

(
0 1
−1 0

)
, 1
)
∈ RC .

In this case, take g = σ−1g′ and the claim is proven.
By a straightforward matrix computation, we have that T∩N ′ ⊂ H. Now

we can prove that N ′ ⊆ H. Indeed, for every element n ∈ N ′, there is a
g ∈ RC with gn ∈ T∩N ′ ⊂ H, by the Claim. Therefore n ∈ g−1H = H. �

5.2. Main error terms

This subsection is devoted to computing the main error terms for all the
three stages of the partial desingularization.

5.2.1. Triple conic

As we have seen, the first step in the Kirwan blow-up process is to blow-
up the locus corresponding to triple conics.

Proposition 5.6. — For the group RC ∼= SL(2,C), the main term of
ARC (t) is given by

P
N(RC)
t

(
ZssRC

) (
t2 + . . . + t2(rkNRC−1)

)
= t2 + . . . + t22

1− t4
≡ t2 + t4 + 2t6 + 2t8 mod t10.

Proof. — We saw in Proposition 4.2 that ZssRC consists of a single point,
and in Proposition 5.4 the normaliser N(RC) and in (5.2) how to compute
the rank of the normal bundle, leading to:

H∗N(RC)(ZssRC ) = H∗(BN(RC)) = H∗(B(H o Z/2Z)) = H∗(BH)Z/2Z,

rkNRC = dimX − (dimG+ dimZss
RC
− dimN(RC)) = 12.

Now we recall that H fits into the central extension (4.4):

1→ µ2 × µ2 → H → PGL(2,C)→ 1,

henceH∗(BH)Z/2Z = H∗(BPGL(2,C))Z/2Z, with the induced Z/2Z-action.
From the description of RC , we saw that this copy of PGL(2,C) must
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be thought as diagonally embedded in PGL(2,C) × PGL(2,C), and Z/2Z
simply interchanges the two factors, acting trivially on the diagonal. This
means that

H∗N(RC)
(
ZssRC

)
= H∗(BPGL(2,C))Z/2Z = H∗(BPGL(2,C))

and P
N(RC)
t

(
ZssRC

)
= Pt(BPGL(2,C)) =

(
1− t4

)−1
. �

5.2.2. D-curves

In the second step, we need to blow up the locus of D-curves.

Proposition 5.7. — For the group RD ∼= C∗, the main term of ARD (t)
is given by

P
N(RD)
t

(
ZssRD,1

) (
t2 + · · ·+ t2(rkNRD−1)

)
= 1 + t2

1− t2
(
t2 + · · ·+ t14)

≡ t2 + 3t4 + 5t6 + 7t8 mod t10.

Proof. — For brevity, write R = RD and N = N(RD) = S o Z/2Z (see
Proposition 4.2 and 5.4). Recall that ZssR,1 is the strict transform of ZssR in
Xss

1 under the first blow-up. We want to give an easier to handle geometric
description of ZssR,1.
We saw in Proposition 4.2 that

ZssR

= P
{
ax3

0y
3
1 + bx2

0x1y0y
2
1 + cx0x

2
1y

2
0y1 + dx3

1y
3
0
}
r{a = b = 0, c = d = 0}.

The centre of the first blow-up is the orbit of the triple conic 3C which
intersects ZssR along the twisted cubic

G · 3C ∩ ZssR = Css

=
{(
u3 : 3u2v : 3uv2 : v3) : (u : v) ∈ P1, u, v 6= 0

}
⊂ ZssR ,

corresponding to the union of three conics that are actually coincident.
Therefore

ZssR, 1 = (BlCss ZssR )ss ,
because we recall that, after taking the proper transform, one should re-
strict only to the semistable points in X1 → X for the induced action of
G. We want to stress that the Kirwan blow-up is a blow-up, followed by
a restriction to the semistable points. Nevertheless, by [17, 1.9], ZssR,1 is
the set of semistable points for the natural action of N/R on BlCss ZssR .
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But every point of ZssR is actually stable for the action of N/R and it will
remain stable after the blow up (see [16, 3.2]). This means that every point
of BlCss ZssR is indeed stable and, a fortiori semistable for N/R, hence:

ZssR, 1 = BlCss ZssR .

In conclusion, ZssR,1 is the blow-up of P3 r {a = b = 0, c = d = 0} along the
twisted cubic Css and we need to compute PNt (ZssR,1) = PNt (BlCss(P3)ss).
According to (5.1), the equivariant cohomology of the blow-up is related to
the centre by the formula:

PNt

(
BlCss

(
P3)ss) = PNt

((
P3)ss)+ t2PNt (Css) .

The action of N on Css is transitive and the stabiliser of 3C = (1 : −3 : 3 :
−1) in N is (H ∩ S) o Z/2Z, where

H ∩ S =
{((

λ 0
0 λ−1

)
,

(
±λ 0
0 ±λ−1

)
, 1
)

: λ ∈ C∗
}

t
{((

0 η

−η−1 0

)
,

(
0 ±η
∓η−1 0

)
, 1
)

: η ∈ C∗
}

so PNt (Css) = Pt(B(H ∩ S))Z/2Z. The natural homomorphism SL(2,C)
× SL(2,C)→ PGL(2,C)× PGL(2,C) induces a central extension:

1→ µ2 × µ2 → H ∩ S → K → 1,

where K ⊂ PGL(2,C) × PGL(2,C) is the image of H ∩ S. Here K has a
structure of semidirect product C∗o S2, where S2 acts on C∗ by inversion.
Hence

H∗N (Css) = H∗(B(H ∩ S))Z/2Z

= H∗(BK)Z/2Z

=
(
H∗ (BC∗)S2

)Z/2Z

=
(
Q[c]S2

)Z/2Z = Q
[
c2] ,

because S2 acts on H2(BC∗) = Q〈c〉 by c ↔ −c and Z/2Z does trivially.
This means that PNt (Css) = (1− t4)−1.
Now we compute PNt ((P3)ss): we consider the action of N on P3 ∼= ZR

and the usual equivariantly perfect stratification (Theorem 3.1 and 3.2),
giving

PNt

((
P3)ss) = PNt

(
P3)− ∑

0 6= β ∈B

t2d(β)P Stab β
t

(
Zssβ
)
.
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Firstly we compute PNt (P3). Notice that N is disconnected, with connected
component of the identity equal to N0 = T , and π0(N) = Z/2ZoZ/2Z =
Z/2Z × Z/2Z. Since Z/2Z × Z/2Z acts by linear transformation on P3, it
acts trivially on cohomology H∗(P3) = Q[h]/(h4) and hence

H∗N (P3) =
(
H∗
(
P3)⊗H∗(BT )

)Z/2Z×Z/2Z

= Q[h]/(h4)⊗Q[c1, c2]Z/2Z×Z/2Z,

where deg(c1) = deg(c2) = 2 and the action of Z/2Z × Z/2Z on H2(BT )
= Q〈c1, c2〉 is represented by the matrices(

−1 0
0 −1

)
and

(
0 1
1 0

)
.

By Molien’s formula, we find that PNt (P3) = (1 + t2 + t4 + t6)(1− t4)−2.
Since the action of T on P3 has weights

(3,−3), (1,−1), (−1, 1), (−3, 3),

which correspond to the weights on the antidiagonal of the Hilbert diagram
(Figure 3.1) in the Lie algebra t, the indexing set of this stratification
is B = {(0, 0), (1,−1), (3,−3)}. The real codimension of the strata are
2d((1,−1)) = 4 and 2d((3,−3)) = 6, while for both indices Zβ = Zssβ = P0

and
Stabβ = 〈T, ι〉 ∼= (C∗)2 o Z/2Z,

as in Table 3.1, so that by Molien’s formula P Stab β
t (Zssβ ) = Pt(B Stabβ)

= (1− t2)−1(1− t4)−1. In conclusion, putting everything together, we get:

PNt

(
BlCss

(
P3)ss) = 1 + t2 + t4 + t6

(1− t4)2 − t4 + t6

(1− t2)(1− t4) + t2

1− t4 = 1 + t2

1− t2 .

The result follows by computing the rank rkNR, via the formula (5.2). �

5.2.3. A-curves

In the last step we need to blow up the locus of A-curves. Recall that
this locus remains unaltered after the first two resolutions.

Proposition 5.8. — For the group RA ∼= C∗, the main term of ARA(t)
is given by

P
N(RA)
t

(
ZssRA

) (
t2 + . . . + t2(rkNRA−1)

)
= t2 + . . . + t18

1− t4
≡ t2 + t4 + 2t6 + 2t8 mod t10.
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Proof. — To compute PN(RA)
t (ZssRA), we use the equality [17, 1.17]:

H∗N
(
ZssRA

)
=
(
H∗
(
ZRA//N

0 (RA)
)
⊗H∗(BR)

)π0N(RA)
.

In our case the action of N(RA)0 = T on ZssRA is transitive, hence

H∗
(
ZssRA//T

)
= H∗(point) = Q.

Moreover π0N(RA) = Z/2Z acts on R ∼= C∗ by inversion, so that

H∗N(RA)
(
ZssRA

)
=
(
H∗
(
ZssRA//T

)
⊗H∗(BC∗)

)Z/2Z

= (Q⊗Q[c])Z/2Z

= Q[c2],

where deg(c) = 2 and the Z/2Z operates on Q[c] by c ↔ −c. Hence
P
N(RA)
t (ZssRA) = (1 − t4)−1. The result follows by computing the rank

rkNRA , via formula (5.2). �

5.3. Extra terms

To complete the computation of the contribution AR(t), we need to cal-
culate the extra terms, as stated in Theorem 5.2. The crucial point is to
analyse for each R ∈ R the representation ρ : R → Aut(NR

x ) on the nor-
mal slice to the orbit G · ZssR at a generic point x ∈ ZssR . Since here we are
dealing only with a local geometry around x, we can restrict to consider
the normal slice to the orbit G0 · ZssR , which is the connected component
of G · ZssR at x.

5.3.1. Tangent space to orbits for hypersurfaces in P1 × P1

If F ∈ H0(P1 × P1,OP1×P1(d, d)) is a bihomogeneous form of bidegree
(d, d), it will define a hypersurface V (F ) ⊂ P1 × P1. We wish to describe
the tangent space to the orbit GL(2,C) × GL(2,C) · F . We are actually
interested in the normal space to the orbit:

SL(2,C)× SL(2,C) · {V (F )} ⊂ PH0 (P1 × P1,OP1× P1(d, d)
)
.

However, since the normal space of any submanifold Y in a projective space
P(W ) can, via the Euler sequence, be identified with the normal space to its
cone C(Y ) ⊂W , we can alternatively study the GL(2,C)×GL(2,C)-orbit
of F in H0(P1×P1,OP1×P1(d, d)), rather than the SL(2,C)×SL(2,C)-orbit
of V (F ) in PH0(P1 × P1,OP1×P1(d, d)).
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The strategy to compute the tangent space to the GL(2,C)×GL(2,C)-
orbit of F is to work with the Lie algebra gl(2,C) × gl(2,C) and use the
exponential map exp : gl(2,C) × gl(2,C) → GL(2,C) × GL(2,C). Given
an element e ∈ gl(2,C) × gl(2,C), the derivative d

dt (exp(te)F )t=0 gives a
vector in the tangent space to the orbit GL(2,C)×GL(2,C) ·F . If we take a
basis of gl(2,C)× gl(2,C), we then obtain generators for the tangent space
to the orbit GL(2,C)×GL(2,C) ·F . In practice, we choose the elementary
matrices e1

ij = (δij)i, j= 1, 2 as a basis of gl(2,C)× 0 and e2
ij = (δij)i, j= 1, 2

for 0× gl(2,C), then we indicate

(DF )kij := d

dt

(
exp

(
tekij
)
F
) ∣∣
t=0, 1 6 i, j, k 6 2.

In conclusion, the tangent space to the orbit GL(2,C) × GL(2,C) · F is
spanned by the entries of the matrix

DF =
(
(DF )1

ij

∣∣(DF )2
ij

)
i, j= 1, 2 .

Coming back to our situation, we carry this procedure out for the equa-
tions of strictly polystable hypersurfaces of P1×P1 of bidegree (3, 3). Indeed
the tangent space to the orbit GL(2,C)×GL(2,C) ·F is given by the span
of the entries of the following matrices:

(i) For F = ax3
0y

3
1 + bx2

0x1y0y
2
1 + cx0x

2
1y

2
0y1 +dx3

1y
3
0 , the matrix DF =

(DF 1|DF 2) is given by

(5.4) DF 1 =
(

3ax3
0y

3
1 + 2bx2

0x1y0y
2
1 + cx0x

2
1y

2
0y1

bx3
0y0y

2
1 + 2cx2

0x1y
2
0y1 + 3dx0x

2
1y

3
0

3ax2
0x1y

3
1 + 2bx0x

2
1y0y

2
1 + cx3

1y
2
0y1

bx2
0x1y0y

2
1 + 2cx0x

2
1y

2
0y1 + 3dx3

1y
3
0

)
,

(5.5) DF 2 =
(
bx2

0x1y0y
2
1 + 2cx0x

2
1y

2
0y1 + 3dx3

1y
3
0

3ax3
0y0y

2
1 + 2bx2

0x1y
2
0y1 + cx0x

2
1y

3
0

bx2
0x1y

3
1 + 2cx0x

2
1y0y

2
1 + 3dx3

1y
2
0y1

3ax3
0y

3
1 + 2bx2

0x1y0y
2
1 + cx0x

2
1y

2
0y1

)
.

The set of linear relations satisfied by the entries of DF is

(5.6)
{

(DF )1
11 = (DF )2

22;
(DF )1

22 = (DF )2
11.

(ii) For F = F3C , which corresponds to (a : b : c : d) = (1 : −3 : 3 : −1)
in the above equations, the set of linear relations satisfied by the
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entries of DF3C consists of the previous ones with the two further
relations:

(5.7)
{

(DF3C)1
12 + (DF3C)2

12 = 0;
(DF3C)1

21 + (DF3C)2
21 = 0.

(iii) For F = FC2A5
= y0y1(x3

0y1 +x3
1y0), the matrix DFC2A5

is given by

(5.8) DFC2A5
=
(

3x3
0y0y

2
1 3x2

0x1y0y
2
1

3x0x
2
1y0y

2
1 3x3

1y
2
0y1

∣∣∣∣∣
x3

0y0y
2
1 + 2x3

1y
2
0y1 x

3
0y

3
1 + 2x3

1y0y
2
1

2x3
0y

2
0y1 + x3

1y
3
0 2x3

0y0y
2
1 + x3

1y
2
0y1

)
.

The set of linear relations satisfied by the entries of DFC2A5
is

(5.9)
{

(DF )1
11 + (DF )1

22 = (DF )2
11 + (DF )2

22;
(DF )1

22 − (DF )1
11 = 3(DF )2

11 − 3(DF )2
22.

5.3.2. Triple conic

We compute the extra contribution coming from the blow up of the triple
conic.

Proposition 5.9. — For the group RC ∼= SL(2,C) the extra term of
ARC (t) is given by∑

0 6=β′∈B(ρ)

1
w(β′, RC , G) t

2d(PNRC ,β′)P
N(RC)∩Stab β′

t (Zssβ′,RC )

= t12(1 + t2 + t4 + t6 + t8)
1− t2

≡ 0 mod t10.

Firstly this lemma describes the weights of the representation ρ : RC →
Aut(NRC

x ), where x = 3C.

Lemma 5.10. — For RC ∼= SL(2,C), dimNRC
x = 12, the weights of

the representation ρ of RC on NRC
x are as follows with the respective

multiplicities
(±6)× 1, (±4)× 2, (±2)× 2, (0)× 2.

Proof. — The maximal torus T1 = {(diag(t, t−1),diag(t, t−1), 1)} in RC
acts on the coordinates ((x0 : x1), (y0 : y1)) diagonally. Thus each mono-
mial is an eigenspace for the action of T1. Hence H0(OP1×P1(3, 3)) = C16
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decomposes as a sum of one-dimensional representations of T1 with the
following multiplicities of weights

(±6)× 1, (±4)× 2, (±2)× 3, (0)× 4.

The tangent space to the orbit G · C3C is generated by the entries of the
matrices (5.4) and (5.5) at 3C. Each polynomial spans an eigenspace for
the action of T1 with weight equal to

(±2)× 2, (0)× 4.

Now the relations (5.6) are among the weight 0 generators, thus we may
drop two of them in forming a basis of the tangent space. The two further
relations (5.7) are among generators of weights 2 and −2, respectively, so
we can drop one generator of weight 2 and −2. In total, the weights on the
tangent space to the orbit are given by

(±2)× 1, (0)× 2.

By subtracting the weights of the representation of the tangent space to
the orbit from the weights of the representation of T1 on C16, we obtain
the weights of the action on the normal space. �

Proof of Proposition 5.9. — From the description of the weights of ρ in
the Lemma 5.10, we see that we can take B(ρ) = {0, 2, 4, 6}. We can com-
pute the codimension of the strata Zssβ′,RC

by means of the formula (3.5):

d
(
PNRC

x , β′
)

= n(β′)− dim (RC/Pβ′) ,

where n(β′) is the number of weights less than β′ and Pβ′ is the as-
sociated parabolic subgroup of dimension 2. After noticing that for ev-
ery weight, w(β′, RC , G) = 1 and N(RC) ∩ Stabβ′ = T̂1 o Z/2Z, where
T̂1 := {(diag(t, t−1),diag(±t,±t−1), 1) : t ∈ C∗} is a double cover of T1,
the result follows. �

5.3.3. D-curves

We compute the extra contribution coming from the blow up of the D-
curves.
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Proposition 5.11. — For the group RD ∼= C∗, the extra term of
ARD (t) is given by∑

0 6= β′ ∈B(ρ)

1
w (β′, RD, G) t

2d(PNRD , β′)PN(RD)∩Stab β′

t (Zssβ′, RD )

=
(
1 + t2

)2

1− t2
(
t8 + t10 + t12 + t14)

≡ t8 mod t10.

This lemma describes the weights of the representation ρ : RD →
Aut(NRD

x ). Here x ∈ ZssRD is a general point: for our purposes it is enough
to take it away from the locus of triple conics, but to fix an explicit point
we consider x = V (F ′ := x3

0y
3
1 + x3

1y
3
0).

Lemma 5.12. — For RD ∼= C∗, dimNRC
x = 8, the weights of the repre-

sentation ρ of RD on NRD
x are

(±6)× 1, (±4)× 2, (±2)× 1.

Proof. — The vector spaceH0(OP1×P1(3, 3)) = C16 decomposes as a sum
of one-dimensional representations of RD with the same multiplicities of
weights as in the previous case:

(±6)× 1, (±4)× 2, (±2)× 3, (0)× 4.

The tangent space to the orbit GL(2,C) × GL(2,C) · F ′ is generated by
the entries of the matrices (5.4) and (5.5), with a, d = 1 and b, c = 0. Each
polynomial spans an eigenspace for the action of RD with weights equal to

(±2)× 2, (0)× 4.

Now the relations (5.6) are among the weight 0 generators, thus we may
drop two of them in forming a basis of the tangent space. In total, the
weights for RD on the tangent space to the orbit GL(2,C)×GL(2,C) · F ′
are given by

(±2)× 2, (0)× 2.
However, we are interested in the normal space NRD

x to the orbit G ·ZssRD .
We know that ZssRD//N is two-dimensional, thus the tangent space Tx(G ·
ZssRD ), when lifted to C16, is the sum of TF ′(GL(2,C) × GL(2,C) · F ′)
together with two tangent vectors representing the direction along ZssRD//N .
This two further vectors can be thought as coming from varying A and B
around 0 in the equation (cf. [8, p. 5658]):

FA,B = x3
0y

3
1 +Ax2

0x1y0y
2
1 +Bx0x

2
1y

2
0y1 + x3

1y
3
0 .
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The derivatives in these directions are d
dAFA,B = x2

0x1y0y
2
1 and d

dBFA,B
= x0x

2
1y

2
0y1, which, as expected, are of weight 0 and do not lie in the span

of the weight-0 space of the orbit. Thus the lift to C16 of the tangent space
to the orbit G · ZssRD is given by a space with weights

(±2)× 2, (0)× 4.

By subtracting the weights of the representation of the tangent space to
the orbit from the weights of the representation of RD on C16, we obtain
the weights of the action on the normal space. �

Proof of Proposition 5.11. — From the description of the weights of ρ
in the Lemma 5.12, we see that we can take B(ρ) = {±6,±4,±2, 0}. We
can compute the codimension of the strata Zssβ′,RD

via the formula (3.5).

d
(
PNRD

x , β′
)

= n(β′)− dim (RD/Pβ′) ,

where n(β′) is the number of weights α such that α · β′ < ||β′||2 and Pβ′

is the associated parabolic subgroup. Due to the symmetry, the coefficient
for every weight is w(β′, RD, G) = 2 and, according to Remark 5.3

P
N(RD)∩Stab β′

t

(
Zssβ′, RD

)
= P

N(RD)∩Stab β′

t

(
ZssRD, 1

)
Pt (Zβ′, ρ) .

because Zβ′,ρ = Zssβ′,ρ is either P0 or P1. One can easily compute the sta-
biliser Stabβ′ = T o Z/2Z ⊂ N(RD), where the semidirect product is
induced from G. Arguing analogously to the main term of RD (see Propo-
sition 5.7), one finds that:

P
ToZ/2Z
t

(
ZssRD, 1

)
=
(
1 + t2

)2

1− t2 ,

completing the proof. �

5.3.4. A-curves

We compute the extra contribution coming from the blow up of the A-
curves.

Proposition 5.13. — For the groupRA ∼= C∗, the extra term ofARA(t)
is given by∑

0 6= β′ ∈B(ρ)

1
w(β′, RA, G) t

2d(PNRA ,β′)PN(RA)∩ Stab β′

t

(
Zssβ′,RA

)
= t10 + t12 + t14 + t16 + t18

1− t2
≡ 0 mod t10.
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The proof of the proposition will consists of showing that the codi-
mension d(PNRA , β′) of any stratum Sβ′(ρ) for 0 6= β′ ∈ B(ρ) is at
least 5. Firstly this lemma describes the weights of the representation
ρ : RA → Aut(NRA

x ).

Lemma 5.14. — For RA ∼= C∗, dimNRC
x = 10, the weights of the rep-

resentation ρ of RA on NRA
x are

(±12)× 1, (±10)× 1, (±8)× 1, (±6)× 1, (±4)× 1.

Proof. — Recall that x is a general point of ZssRA , but since G · ZssRA =
G · C2A5 we can take x = C2A5 . Hence to describe NRA

x , we must simply
describe the normal space to the orbit G · C2A5 at C2A5 .

The vector space H0(OP1×P1(3, 3)) = C16 decomposes as a sum of one-
dimensional representation ofRA with the following multiplicities of weights

(±12)× 1, (±10)× 1, (±8)× 1, (±6)× 2, (±4)× 1, (±2)× 1, (0)× 2.

The tangent space to the orbit G · C2A5 is generated by the entries of the
matrix (5.9). Each polynomial spans an eigenspace for the action of RA
with weight equal to

(±6)× 1, (±2)× 1, (0)× 4.

Now the relations (5.9) are among the weight 0 generators, thus we may
drop two of them in forming a basis of the tangent space. In total, the
weights for RA on the tangent space to the orbit are given by

(±6)× 1, (±2)× 1, (0)× 2.

By subtracting the weights of the representation of the tangent space to
the orbit from the weights of the representation of RA on C16, we obtain
the weights of the action on the normal space. �

Proof of Proposition 5.13. — From the description of the weights of ρ in
the Lemma 5.14, we see that we can take B(ρ) = {±12,±10,±8,±6,±4, 0}.
We can calculate the codimension via (3.5)

d
(
PNRA

x , β′
)

= n(β′)− dim (RA/Pβ′) ,

where n(β′) is the number of weights α such that α · β′ < ||β′||2 and Pβ′ is
the associated parabolic subgroup, in this case equal to RA since RA is a
torus. After noticing that for every non-zero weight, w(β′, RA, G) = 2 and
N(RA) ∩ Stabβ′ = T , the result follows. �
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5.4. Cohomology of M̃

We complete the proof of Theorem 5.1.

Proof of Theorem 5.1. — From Theorem 5.2, we need to put all the
previous results together to find the Betti numbers of the Kirwan partial
desingularization M̃ . For the sake of readability, we report only the poly-
nomials modulo t10, but one can double-check the result with the entire
Hilbert–Poincaré series and observe that Poincaré duality effectively holds.

Pt(M̃) = PGt (X̃ss) ≡

1 + t2 + 2t4 + 2t6 + 4t8(Semistable locus)

+ t2 + t4 + 2t6 + 2t8 − 0(Error term for triple conic)

+ t2 + 3t4 + 5t6 + 7t8 − t8(Error term for D-curves)

+ t2 + t4 + 2t6 + 2t8 − 0(Error term for A-curves)

≡ 1 + 4t2 + 7t4 + 11t6 + 14t8 mod t10.

�

6. Intersection cohomology of the moduli space M

In this Section, we compute the intersection cohomology ofM descending
from M̃ , and thus prove the following:

Theorem 6.1. — The intersection Hilbert–Poincaré polynomial of M
is

IPt(M) = 1 + t2 + 2t4 + 2t6 + 3t8 + 3t10 + 2t12 + 2t14 + t16 + t18.

In the first part of the Section, we recall Kirwan’s procedure to com-
pare the cohomology of X̃//G and the intersection cohomology of X//G,
as explained in [17]. This is in turn an application of the Decomposition
Theorem by Bĕılinson, Bernstein, Deligne and Gabber (cf. [2]).
In the second part of the Section, instead of applying the Decomposition

Theorem directly to the blow-down map M̃ → M at the level of GIT
quotients, we follow Kirwan’s results (see [17]) and study the variation of
the intersection Betti numbers at the level of the parameter spaces Xss

and X̃ss, under each stage of the resolution.
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6.1. General setting

We start with the general setting, as in Section 4.1 and Section 5.1, of a
projective manifoldX acted on by a reductive group G. We suppose to have
performed all the stages of the modification X̃ss → Xss, indexed by the set
R, so that the Kirwan blow-up X̃//G → X//G is obtained by blowing-up
successively the (proper transforms of the) subvarieties ZssR //N(R). Since
the partial desingularization X̃//G has only finite quotient singularities, its
intersection cohomology IH∗(X̃//G) with rational coefficients is isomorphic
to the corresponding rational cohomology H∗(X̃//G), and so by the above
results we know the Betti numbers of its intersection cohomology. Even-
tually, we will be able to find the intersection Betti numbers of X//G, by
means of the following:
Theorem 6.2 ([17, 3.1]). — In the above setting, the intersection

Hilbert–Poincaré polynomial of the GIT quotient X//G is related to that
of the Kirwan blow-up via the equality

IPt(X//G) = Pt(X̃//G)−
∑
R∈R

BR(t),

where the error term is given by:

BR(t) =
∑
p+q=i

ti dim
[
Hp
(
ẐR//N

0(R)
)
⊗ IH q̂R

(
PNR

x //R
)]π0N(R)

,

where the integer q̂R = q − 2 for q 6 dimPNR
x //R and q̂R = q otherwise.

The subvariety ẐR is the strict transform of ZssR in the appropriate stage
of the resolution, while N(R) ⊂ G denotes the normaliser of R. The GIT
quotient PNR

x //R is constructed from the induced action of R on the normal
slice NR

x to the orbit G · ZssR in Xss at a general point x ∈ ZssR .

Remark 6.3. — If ẐR//N0(R) is simply connected, which is always the
case in our situation, then the action of π0N(R) on the tensor product
splits [17, Section 2], thus the error term for the subgroup R is

BR(t) =
∑
p+q=i

ti dimHp
(
ẐR//N(R)

)
· dim IH q̂R

(
PNR

x //R
)π0N(R)

.

6.2. Cohomology of blow-downs for (3, 3) curves in P1 × P1

We want to apply Theorem 6.2 to compute the intersection Betti numbers
of the moduli space of non-hyperelliptic Petri-general curves of genus 4.
Now we will follow backwards the steps of the blow-down operations of
A-curves, then D-curves, and eventually triple conics.
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6.2.1. A-curves

In the first step we need to blow-down the locus of A-curves.

Proposition 6.4. — For the group RA ∼= C∗, we have

(i) ZRA//N(RA) is a point.
(ii) IPt(PNRA

x //RA) = 1+2t2 +3t4 +4t6 +5t8 +4t10 +3t12 +2t14 + t16.

The term BRA(t) is given by

BRA(t) = t2 + t4 + 2t6 + 2t8 + 2t10 + 2t12 + t14 + t16

≡ ARA(t) mod t10.

Proof. — For brevity we write R = RA, N = N(RA) and P9 ∼= PNRA
x .

(1) follows from the fact that N acts transitively on ZssR .
In Lemma 5.14 the weights of the representation ρ : R→ Aut(NR

x ) were
computed. It follows that there are no strictly-semistable points in P9, so
that the GIT quotient P9//R is a projective toric variety of dimension 8
with at worst finite quotient singularities. Thus IPt(P9//R) = Pt(P9//R) =
PRt ((P9)ss) and using the usual R-equivariantly perfect stratification (see
Theorem 3.1 and 3.2) we obtain:

PRt

((
P9)ss) = Pt

(
P9)Pt(BR)−

∑
0 6= β′ ∈B(ρ)

t2d(β′)PRt (Sβ′)

= 1 + · · ·+ t18

1− t2 − 2 t
10 + · · ·+ t18

1− t2
= 1 + 2t2 + 3t4 + 4t6 + 5t8 + 4t10 + 3t12 + 2t14 + t16.

Now we need to know the dimensions dim IH q̂(P9//R)π0N , where the action
is induced by an action of π0N on P9//R. We have seen that π0N ∼= Z/2Z
acts on P9//R via permutation of the coordinates ((x0 : x1), (y0 : y1)) ↔
((x1 : x0), (y1 : y0)). Thus the action on the cohomology of P9 is triv-
ial, while Z/2Z acts on the torus C∗ via λ ↔ λ−1, hence in cohomology
H∗(BC∗) = Q[c] by c↔ −c, and on the strata interchanging the positive-
indexed ones with the negative-indexed ones. Eventually

IPt
(
P9//R

)π0N = 1 + · · ·+ t18

1− t4 − t10 + · · ·+ t18

1− t2
= 1 + t2 + 2t4 + 2t6 + 3t8 + 2t10 + 2t12 + t14 + t16.

Now the final statement easily follows from the definition of BR(t). �
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6.2.2. D-curves

In the second step, we need to blow-down the locus of D-curves.

Proposition 6.5. — For the group RD ∼= C∗ with the notation as in
the proof of Proposition 5.7, we have

(i) ZRD,1//N(RD) is a simply connected surface and

Pt (ZRD, 1//N(RD)) = 1 + 2t2 + t4.

(ii) IPt(PNRD
x //RD) = 1 + 2t2 + 3t4 + 4t6 + 3t8 + 2t10 + t12.

The term BRD (t) is equal to

BRD (t) = t2 + 3t4 + 5t6 + 7t8 + 7t10 + 5t12 + 3t14 + t16.

Proof. — For brevity we write R = RD, N = N(RD) and P7 ∼= PNRD
x .

The GIT quotient ZR,1//N ∼= ZR,1//(N/R) is a rational surface with finite
quotient singularities, hence simply connected by [21, Theorem 7.8]. Its
cohomology can be computed by means of the equality [17, 1.17]:

H∗N
(
ZssR,1

)
=
(
H∗
(
ZR, 1//N

0)⊗H∗(BR)
)π0N

.

The action of π0N splits on the tensor product, because also ZR,1//N0 is
simply connected, giving:

H∗N
(
ZssRD, 1

)
= H∗

(
ZssRD, 1//N

)
⊗H∗(BR)π0N .

Recall that π0N = N/T = Z/2Z o Z/2Z = Z/2Z × Z/2Z: the first factor
acts on R ∼= C∗ by inversion, while the second one acts trivially. Therefore

H∗(BR)π0N = Q[c]Z/2Z×Z/2Z = Q[c2], deg(c) = 2.

In the proof of Proposition 5.7, we have already computed PNt (ZssRD,1), thus

Pt(ZssRD,1//N) = 1 + t2

1− t2 (1− t4) = 1 + 2t2 + t4,

completing the proof of (i).
In Lemma 5.12 the weights of the representation ρ : R → Aut(NR

x )
were carried out. It follows that there are no strictly-semistable points in
P7, so that the GIT quotient P7//R is a projective variety of dimension 6
with at worst finite quotient singularities. Thus IPt(P7//R) = Pt(P7//R) =
PRt ((P7)ss) and using the usual R-equivariantly perfect stratification (see
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Theorem 3.1 and 3.2) we obtain:

PRt ((P7)ss) = Pt(P7)Pt(BR)−
∑

0 6= β′ ∈B(ρ)

t2d(β′)PRt (Sβ′)

= 1 + · · ·+ t14

1− t2 − 2 t
8 + t10(1 + t2) + t14

1− t2
= 1 + 2t2 + 3t4 + 4t6 + 3t8 + 2t10 + t12.

Now we need to know the dimensions dim IH q̂(P7//R)π0N . We have seen
that π0N ∼= Z/2Z×Z/2Z acts on P7//R as follows: the first Z/2Z factor via
permutation of the coordinates ((x0 : x1), (y0 : y1))↔ ((x1 : x0), (y1 : y0)),
while the second one by interchanging the rulings of P1×P1. Thus the action
on the cohomology of P7 is trivial, while the first factor of Z/2Z × Z/2Z
acts on the torus C∗ via λ ↔ λ−1, hence in cohomology H∗(BC∗) = Q[c]
by c↔ −c, and the second factor does trivially. Moreover π0N acts on the
strata interchanging the positive-indexed ones with the negative-indexed
ones:

IPt
(
P7//R

)π0N

= 1 + · · ·+ t14

1− t4 − t8 + · · ·+ t14

1− t2
= 1 + t2 + 2t4 + 2t6 + 2t8 + t10 + t12.

Now the final statement easily follows from the definition of BR(t). �

6.2.3. Triple conic

The last step is blowing-down the triple conics.

Lemma 6.6. — The intersection cohomology of the GIT quotient PNRC
x

//RC is

IPt
(
PNRC

x //RC
)

= 1 + t2 + 2t4 + 2t6 + 2t8 + 2t10 + 2t12 + t14 + t16.

Proof. — For brevity we write R = RC ∼= SL(2,C) and P11 = PNRC
x .

From the weights of the slice representation (Lemma 5.10) and the usual
R-equivariantly perfect stratification (see Theorem 3.1 and 3.2) one can
compute the equivariant Poincaré series of the semistable locus

PRt

((
P11)ss) = 1 + · · ·+ t22

1− t4 − t12(1 + t2) + t16(1 + t2) + t20

1− t2 .

Unfortunately, the space P11//R is not rationally smooth, thus

PRt

((
P11)ss)
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is a priori neither Pt(P11//R) nor IPt(P11//R). The remedy for this is first
to blow-up the orbit associated to the subgroup T1 := {diag(t, t−1) : t ∈
C∗} ⊂ R, which fixes strictly polystable points. Using the same procedure
as before, we obtain a partial desingularization P̃11//R, whose cohomology
is related to the R-equivariant cohomology of (P11)ss by the error term (see
Theorem 5.2)

AT1(t) = 1 + t2

1− t4
(
t2 + · · ·+ t14)− 1 + t2

1− t2
(
t8 + t10 (1 + t2

)
+ t14) .

Hence the cohomology of the Kirwan blow-up is given by:

Pt

(
P̃11//R

)
= PRt

((
P11)ss)+AT1(t)

= 1 + 2t2 + 4t4 + 5t6 + 6t8 + 5t10 + 4t12 + 2t14 + t16.

Now by the blowing-down procedure (see Theorem 6.2), we need to sub-
tract the error term

BT1(t) = t2 + 2t4 + 3t6 + 4t8 + 3t10 + 2t12 + t14.

Now the statement follows from IPt(P11//R) = Pt(P̃11//R)−BT1(t). �

Proposition 6.7. — For the group RC ∼= SL(2,C), the error term
BRC (t) is given by

BRC (t) = t2 + t4 + 2t6 + 2t8 + 2t10 + 2t12 + t14 + t16

≡ ARC (t) mod t10.

Proof. — The result easily follows from the definition of BRC (t), after
noticing that ZRC//N(RC) is a point and the group π0N(RC) acts trivially
on IH∗(PNRC

x //R) (cf. Proposition 5.6), which we computed in Lemma 6.6.
�

6.3. Intersection cohomology of M

We complete the proof of Theorem 6.1.

Proof of Theorem 6.1. — From Theorem 6.2 putting all the previous
results together, we obtain that the intersection Hilbert–Poincaré polyno-
mial of the moduli space of non-hyperelliptic Petri-general genus 4 curves
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M = X//G is

IPt(M) = Pt(M̃)−
∑
R∈R

BR(t)

= PGt (Xss) +
∑
R∈R

(AR(t)−BR(t))

≡ 1 + t2 + 2t4 + 2t6 + 4t8 + 0− t8 + 0 mod t10

≡ 1 + t2 + 2t4 + 2t6 + 3t8 mod t10.

�

Together with Theorem 5.1, this also completes the proof of the main
Theorem 1.1.

Remark 6.8 (cf. [17, 3.4]). — As a by-product of our result, we are able
to determine the ordinary Betti numbers

Hi(X//G) = IHi(X//G) for 12 6 i 6 18

and
Hi(Xs/G) = IHi(X//G) for 0 6 i 6 6

where Xs/G = X//G r
⋃
R∈R ZR//N(R) is the orbit space of GIT-stable

curves.

6.4. Geometric interpretation

In conclusion, we give a geometric interpretation of some Betti numbers
of the compactification M , by describing the classes of curves generating
the cohomology spaces.
Let U ⊂ M be the affine open subset corresponding to smooth non-

hyperelliptic Petri-general curves of genus four. Tommasi [24, Theorem 1.2]
computed the rational cohomology of U , as geometric quotient of the com-
plement of a discriminant, namely

Hi(U) =
{

1 i = 0, 5
0 otherwise.

We now consider the Gysin long exact sequence (cf. [9, Section 19.1(6)])
associated to the inclusion U ↪→M :

(6.1) · · · → Hk+1(U)→ Hk(M r U)→ Hk(M)→ Hk(U)→ . . .

where H∗ denotes the rational Borel–Moore homology theory (cf. [9, Ex-
ample 19.1.1]). As U has at most finite quotient singularities, by Poincaré
duality dimHk+1(U) = 1 for k = 12, 17 and vanishes in all other degrees.
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The dimensions of Hk(M rU) ∼= Hk(Xs/GrU), for k > 12, can be also
computed from Remark 6.8 via the Gysin sequence related to the inclusion
U ↪→ Xs/G. Therefore, the geometry of the curves in M r U suggests the
following geometric interpretation of the Betti numbers:

• H18(M) is obviously generated by the fundamental class of M ;
• H16(M) is generated by the fundamental class of M r U , i.e. the

locus of singular curves;
• H14(M) is generated by the fundamental classes of the following

subvarieties of M r U : the closure of the locus of curves with at
least two nodes and the closure of the locus of curves with a cusp;

• H12(M) is generated by the fundamental classes of the following
subvarieties of M r U : the closure of the locus of curves with at
least three points in general position, the locus of reducible curves
with a line as component and the closure of the locus of curves with
at least a node and cusp. These three classes generateH12(MrU) ∼=
Q3, but are linearly dependent in H12(M) ∼= Q2 and the space of
relations con be identified with H13(U) ∼= Q.

Similar (but dual) considerations can be applied to the Betti numbers of
the stable quotient Xs/G. The geometric interpretation explained above
hence confirms the results about IHi(M) for i 6 6.
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