Soit un ensemble uniformément rectifiable de codimension dans un espace euclidien de dimension et soit son complémentaire. Nous montrons que toute fonction harmonique est -approchable dans pour tout fini strictement plus grand que . Cela montre, compte tenu de résultats précédents par différents auteurs, que ponctuellement, les propriétés d’-approximation de type et de fonctions harmoniques sont équivalentes et elles caractérisent la rectifiabilité uniforme des ensembles réguliers au sens d’Ahlfors–David de codimension . Nos résultats et techniques sont des généralisations de travaux récents de T. Hytönen, A. Rosén et du premier auteur, J. M. Martell et S. Mayboroda.
Suppose that is a uniformly rectifiable set of codimension . We show that every harmonic function is -approximable in for every , where . Together with results of many authors this shows that pointwise, and type -approximability properties of harmonic functions are all equivalent and they characterize uniform rectifiability for codimension Ahlfors–David regular sets. Our results and techniques are generalizations of recent works of T. Hytönen and A. Rosén and the first author, J. M. Martell and S. Mayboroda.
Révisé le :
Accepté le :
Publié le :
Keywords: $\varepsilon $-approximability, uniform rectifiability, Carleson measures, harmonic functions.
Mot clés : $\varepsilon $-approximation, rectifiabilité uniforme, mesures de Carleson, fonction harmonique.
Hofmann, Steve 1 ; Tapiola, Olli 2
@article{AIF_2020__70_4_1595_0, author = {Hofmann, Steve and Tapiola, Olli}, title = {Uniform rectifiability and $\varepsilon $-approximability of harmonic functions in $L^p$}, journal = {Annales de l'Institut Fourier}, pages = {1595--1638}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {70}, number = {4}, year = {2020}, doi = {10.5802/aif.3359}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3359/} }
TY - JOUR AU - Hofmann, Steve AU - Tapiola, Olli TI - Uniform rectifiability and $\varepsilon $-approximability of harmonic functions in $L^p$ JO - Annales de l'Institut Fourier PY - 2020 SP - 1595 EP - 1638 VL - 70 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3359/ DO - 10.5802/aif.3359 LA - en ID - AIF_2020__70_4_1595_0 ER -
%0 Journal Article %A Hofmann, Steve %A Tapiola, Olli %T Uniform rectifiability and $\varepsilon $-approximability of harmonic functions in $L^p$ %J Annales de l'Institut Fourier %D 2020 %P 1595-1638 %V 70 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3359/ %R 10.5802/aif.3359 %G en %F AIF_2020__70_4_1595_0
Hofmann, Steve; Tapiola, Olli. Uniform rectifiability and $\varepsilon $-approximability of harmonic functions in $L^p$. Annales de l'Institut Fourier, Tome 70 (2020) no. 4, pp. 1595-1638. doi : 10.5802/aif.3359. https://aif.centre-mersenne.org/articles/10.5802/aif.3359/
[1] Uniform rectifiability, elliptic measure, square functions, and -approximability via an ACF monotonicity formula (2016) (https://arxiv.org/abs/1612.02650)
[2] A new characterization of chord-arc domains, J. Eur. Math. Soc., Volume 19 (2017) no. 4, pp. 967-981 | DOI | MR | Zbl
[3] Harmonic measure and arclength, Ann. Math., Volume 132 (1990) no. 3, pp. 511-547 | DOI | MR | Zbl
[4] -approximability of harmonic functions in implies uniform rectifiability, Proc. Am. Math. Soc., Volume 147 (2019) no. 5, pp. 2107-2121 | DOI | MR | Zbl
[5] A theorem with remarks on analytic capacity and the Cauchy integral, Colloq. Math., Volume 60/61 (1990) no. 2, pp. 601-628 | DOI | MR | Zbl
[6] Approximation of harmonic functions, Ann. Inst. Fourier, Volume 30 (1980) no. 2, pp. 97-107 | DOI | Numdam | MR | Zbl
[7] Singular integrals and rectifiable sets in : Beyond Lipschitz graphs, Astérisque, 193, Société Mathématique de France, 1991, 152 pages | Numdam | MR | Zbl
[8] Analysis of and on uniformly rectifiable sets, Mathematical Surveys and Monographs, 38, American Mathematical Society, 1993, xii+356 pages | DOI | MR | Zbl
[9] Fourier analysis, Graduate Studies in Mathematics, 29, American Mathematical Society, 2001, xviii+222 pages (translated and revised from the 1995 Spanish original by David Cruz-Uribe) | MR | Zbl
[10] Measure theory and fine properties of functions, Studies in Advanced Mathematics, CRC Press, 1992, viii+268 pages | MR | Zbl
[11] spaces of several variables, Acta Math., Volume 129 (1972) no. 3-4, pp. 137-193 | DOI | MR | Zbl
[12] Bounded analytic functions, Pure and Applied Mathematics, 96, Academic Press Inc., 1981, xvi+467 pages | MR | Zbl
[13] Uniform rectifiability from Carleson measure estimates and -approximability of bounded harmonic functions, Duke Math. J., Volume 167 (2018) no. 8, pp. 1473-1524 | DOI | MR | Zbl
[14] Equivalence of sparse and Carleson coefficients for general sets, Ark. Mat., Volume 56 (2018) no. 2, pp. 333-339 | DOI | MR | Zbl
[15] Square function/non-tangential maximal function estimates and the Dirichlet problem for non-symmetric elliptic operators, J. Am. Math. Soc., Volume 28 (2015) no. 2, pp. 483-529 | DOI | MR | Zbl
[16] Uniform rectifiability and harmonic measure I: Uniform rectifiability implies Poisson kernels in , Ann. Sci. Éc. Norm. Supér., Volume 47 (2014) no. 3, pp. 577-654 | DOI | MR | Zbl
[17] Uniform rectifiability, Carleson measure estimates, and approximation of harmonic functions (unpublished) | Zbl
[18] Uniform rectifiability, Carleson measure estimates, and approximation of harmonic functions, Duke Math. J., Volume 165 (2016) no. 12, pp. 2331-2389 | DOI | MR | Zbl
[19] Systems of dyadic cubes in a doubling metric space, Colloq. Math., Volume 126 (2012) no. 1, pp. 1-33 | DOI | MR | Zbl
[20] Bounded variation approximation of dyadic martingales and solutions to elliptic equations, J. Eur. Math. Soc., Volume 20 (2018) no. 8, pp. 1819-1850 | DOI | MR | Zbl
[21] Boundary behavior of harmonic functions in nontangentially accessible domains, Adv. Math., Volume 46 (1982) no. 1, pp. 80-147 | DOI | MR | Zbl
[22] A new approach to absolute continuity of elliptic measure, with applications to non-symmetric equations, Adv. Math., Volume 153 (2000) no. 2, pp. 231-298 | DOI | MR | Zbl
[23] Intuitive dyadic calculus: the basics, Expo. Math., Volume 37 (2019) no. 3, pp. 225-265 | DOI | MR | Zbl
[24] Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces, Am. J. Math., Volume 114 (1992) no. 4, pp. 813-874 | DOI | MR | Zbl
[25] A remark on functions of bounded mean oscillation and bounded harmonic functions, Pac. J. Math., Volume 74 (1978) no. 1, pp. 257-259 Addendum to: “BMO functions and the -equation” (Pac. J. Math. 71 (1977), no. 1, p. 221–273) | DOI | MR | Zbl
[26] Imbedding and multiplier theorems for discrete Littlewood-Paley spaces, Pac. J. Math., Volume 176 (1996) no. 2, pp. 529-556 | DOI | MR | Zbl
Cité par Sources :