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UNIFORM RECTIFIABILITY AND
e-APPROXIMABILITY OF HARMONIC FUNCTIONS
IN LP

by Steve HOFMANN & Olli TAPIOLA (*)

ABSTRACT. — Suppose that £ C R™*! is a uniformly rectifiable set of codi-
mension 1. We show that every harmonic function is e-approximable in LP(Q) for
every p € (1,00), where Q := R*t1\ E. Together with results of many authors this
shows that pointwise, L> and LP type e-approximability properties of harmonic
functions are all equivalent and they characterize uniform rectifiability for codimen-
sion 1 Ahlfors—David regular sets. Our results and techniques are generalizations
of recent works of T. Hytonen and A. Rosén and the first author, J. M. Martell
and S. Mayboroda.

RESUME. — Soit E un ensemble uniformément rectifiable de codimension 1 dans
un espace euclidien de dimension n + 1 et soit €2 son complémentaire. Nous mon-
trons que toute fonction harmonique est e-approchable dans LP(Q2) pour tout p
fini strictement plus grand que 1. Cela montre, compte tenu de résultats précé-
dents par différents auteurs, que ponctuellement, les propriétés d’e-approximation
de type L™ et LP de fonctions harmoniques sont équivalentes et elles caractérisent
la rectifiabilité uniforme des ensembles réguliers au sens d’Ahlfors—David de codi-
mension 1. Nos résultats et techniques sont des généralisations de travaux récents
de T. Hytonen, A. Rosén et du premier auteur, J. M. Martell et S. Mayboroda.

1. Introduction

In many branches of analysis, Carleson measure estimates are powerful
tools that are deeply connected to e.g. elliptic partial differential equations
and geometric measure theory. These estimates are particularly useful for
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measures of the type |Vu(Y)|dY (see e.g. [11, 12]) but the problem is that
even strong analytic properties of the function u are not enough to guaran-
tee that the distributional gradient defines a measure of this type. The idea
behind e-approximability is that although a function may fail this Carleson
measure property, it can sometimes be approximated arbitrarily well in the
L sense (typically, if it is the solution to an elliptic partial differential
equation) by a function ¢ such that |[Ve(Y)|dY is a Carleson measure.
Starting from the work of N. Th. Varopoulos [25] and J. Garnett [12], this
approximation technique has had an imporant role in the development of
the theory of elliptic partial differential equations. It has been used to e.g.
explore the absolute continuity properties of elliptic measures [15, 22] and,
very recently, give a new characterization of uniform rectifiability [13, 18].

In this article, we extend the recent results of the first author, J. M.
Martell and S. Mayboroda [18] and show that if £ C R"*! is a uniformly
rectifiable (UR) set of codimension 1, then every harmonic function is e-
approximable in LP(Q) for every € € (0,1) and every p € (1,00), where
Q) == R"1\ E. The LP version of e-approximability was recently introduced
by T. Hytonen and A. Rosén [20] who showed that any weak solution to
certain elliptic partial differential equations in Ri“ is e-approximable in
LP? for every ¢ € (0,1) and every p € (1,0).

Let us be more precise and recall the definition of e-approximability:

DEFINITION 1.1. — Suppose that E C R"*! is an n-dimensional ADR
set (see Definition 1.7) and let  := R"*1\ E and ¢ € (0,1). We say that
a function w such that ||ul[;~) < 1 is e-approximable if there exists a
constant C. and a function ¢ = ¢° € BVj,(Q2) satistying

1
[u—¢llL=@ <e and sup — // IVp(Y)|dY < C..
zeE,r>0T B(z,r)NQ

Here ffB(a:,r)ﬂQ |V|dY stands for the total variation of ¢ over B(z,r)NQ
(see Section 1.5).

Sometimes W11 [15] or C* [12, 22] is used in the definition instead of
BVioe. The first results about e-approximability showed that every bounded
harmonic function u, normalized so that ||u||L~ < 1, enjoys this approxi-
mation property for every € € (0,1) in the upper half-space R’}rﬂ [12, 25]
and in Lipschitz domains [6]. This is a highly non-trivial property since
there exist bounded harmonic functions u such that |Vu(Y)|dY is not a
Carleson measure [12]. The LP version of the property was defined only
recently in [20]:
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DEFINITION 1.2. — Suppose that E C R"*! is an n-dimensional ADR
set and let Q := R""1\ E, e € (0,1) and p € (1,00). We say that a function
u is e-approximable in LP if there exists a function ¢ = ¢° € BVj,.() and
constants C}, and D, . such that

{|N*<u O)Lr ) S eColl Nett]l Lo ()
IC(V)llr(m) S Dpel|Notil| Lo (1),

where N, is the non-tangential maximal operator (see Definition 1.24) and

eVl =sw = [ welar,
r>0T B(z,r)NQ

Here, as above, we have written [[5, ., [V¢|dY to denote the total
variation of ¢ over B(z,r) N ; we ask the reader to forgive this abuse of
notation. See Section 1.5 for details.

In [20], the authors showed that if Q@ = R} and A € L>(R"; L(R"!))
satisfies (A(x)v,v) > Aa|v|? for almost every x € R™ and all v € R"*1\ {0},
then any weak solution u to the t-independent real scalar (but possibly non-
symmetric) divergence form elliptic equation div,; A(z)Vy u(z,t) = 0 is
g-approximable in LP for any € € (0,1) and any p € (1, 00).

If we move from R’}"! to the UR context (see Definition 1.8) with no
assumptions on connectivity, things will not only get more complicated
but we also lose many powerful tools. For example, constructing objects
like Whitney regions and Carleson boxes becomes considerably more diffi-
cult and the harmonic measure no longer necessarily belongs to the class
weak-A,, with respect to the surface measure [3]. Despite these difficul-
ties, there exists a rich theory of harmonic analysis and many results on
elliptic partial differential equations on sets with UR boundaries. Uniform
rectifiability can be characterized in numerous different ways and many of
these characterizations are valid in all codimensions (see the seminal work
of G. David and S. Semmes [7, 8]). For example, UR sets are precisely those
ADR sets for which certain types of singular integral operators are bounded
from L? to L?. Recently, the first author, Martell and Mayboroda showed
that if £ is a UR set of codimension 1, then every bounded harmonic func-
tion in R"™! \ E is e-approximable for every ¢ € (0,1) [18]. After this,
it was shown by Garnett, Mourgoglou and Tolsa that e-approximability
of bounded harmonic functions implies uniform rectifiability for n-ADR
sets [13]. This characterization result was then generalized for a class of
elliptic operators by Azzam, Garnett, Mourgoglou and Tolsa [1].

Our main result is the following generalization of the Hyténen—Rosén
approximation theorem [20, Theorem 1.3]:
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THEOREM 1.3. — Let E C R™™! be a UR set of codimension 1 and
denote € := R" ™!\ E. Then every harmonic function in § is e-approximable
in LP for every € € (0,1) and every p € (1,00) with C, = || Mpl/rr—rr
and D, = Cp||M| pr—r»/e?, where M is the Hardy-Littlewood maximal
operator and My is its dyadic version (see Section 1.1).

In fact, the key ideas of Hyténen and Rosén allow us to construct p-
independent approximating functions. To be more precise, let us consider
the following pointwise approximating property:

DEFINITION 1.4. — Suppose that E C R"*! is an n-dimensional ADR
set and let = R"™1 \ E and ¢ € (0,1). We say that a function u is
pointwise e-approximable if there exists a function p = ¢ € BVj,.(2) and
a constant D, such that

{N*w — ¢)() S eMp(N.u)(x)
Co(Vep)(x) S DM (Mp(N,u))(x)

for almost any x € E, where Cp is a dyadic version of D (see Section 1.6).

Since C(Vp) and Cp (V) are LP-equivalent by Lemma 1.23, Theorem 1.3
is an immediate corollary of the following result and the LP-boundedness
of the Hardy—Littlewood maximal operator and its dyadic versions:

THEOREM 1.5. — Suppose that E C R"*! is an n-dimensional UR set
and let Q == R""1\ E and ¢ € (0,1). Then every harmonic function in
is pointwise e-approximable.

Although the LP version of e-approximability seems like the weakest one
of all the properties, it is equivalent with the other properties in the codi-
mension 1 ADR context provided that p is large enough. This follows from
the recent results of S. Bortz and the second author [4]. Hence, combining
our results with the results in [4, 13, 18] gives us the following characteri-
zation theorem:

THEOREM 1.6. — Suppose that E C R"*! is an n-dimensional ADR
set and let Q := R"™1 \ E. The following conditions are equivalent:

(1) E is UR.

(2) Bounded harmonic functions in ) are e-approximable for every € €
(0,1).

(3) Harmonic functions in §) are pointwise e-approximable for every
e € (0,1).

(4) Harmonic functions in € are e-approximable in LP for some p >
n/(n—1) and every € € (0,1).

ANNALES DE L’INSTITUT FOURIER
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Harmonic functions in ) are e-approximable in LP for allp € (1, 00)
and every € € (0,1).

To prove the implication (1) = (3), we combine some techniques of

the proof of the Hytonen—Rosén theorem with the tools and techniques

from [18]. Some of the techniques can be used in a straightforward way
but with the rest of them we have take care of many technicalities and be
careful with the details.

We start by recalling the basic definitions and some results needed in our
statements and proofs. For the most part, our notation and terminology
agrees with [18].

1.1. Notation

We use the following notation.

(1)
(2)

The set E C R**! will always be a closed set of Hausdorff dimension
n. We denote  :=R" "1\ E.

The letters ¢ and C' denote constants that depend only on the di-
mension, the ADR constant (see Definition 1.7), the UR constants
(see Definition 1.8) and other similar parameters. We call them
structural constants. The values of ¢ and C' may change from one
occurence to another. We do not track how our bounds depend on
these constants and usually just write Ay < Ao if Ay < ¢\o for a
structural constant ¢ and A; &= Ag if Ay < g < Ay

We use capital letters X, Y, Z, and so on to denote points in 2 and
lowecase letters x,y, z, and so on to denote points in F.

The (n + 1)-dimensional Euclidean open ball of radius r will be
denoted B(z,r) or B(X,r) depending on whether the center point
lies on E or 2. We denote the surface ball of radius r centered at x
by A(z,r) = B(z,r) N E.

Given a Euclidean ball B :== B(X,r) or a surface ball A := A(z,r)
and constant k > 0, we denote kB := B(X, kr) and kA = Az, kr).
For every X € Q we set 6(X) := dist(X, E).

We let H"™ be the n-dimensional Hausdorff measure and denote o =
H"|g. The (n + 1)-dimensional Lebesgue measure of a measurable
set A C Q will be denoted by |A|.

For a set A C R""!, we let 14 be the indicator function of A:
la(z)=0ifzx ¢ Aand 14(z)=11if z € A.

The interior of a set A will be denoted by int(A). The closure of a
set A will be denoted by A.

TOME 70 (2020), FASCICULE 4
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(10) For p-measurable sets A with positive and finite measure we set
fA fdu = ﬁfd,u.

(11) The Hardy-Littlewood maximal operator and its dyadic version
(see Section 1.3) in E will be denoted M and Mp, respectively:

Mf(z) = sup f 1£(2)[do(2),

A(y,r)dz

Mof(z) = sup ][\f )ldo(2)

QeD,Q>x

1.2. ADR, UR and NTA sets

DEFINITION 1.7. — We say that a closed set E C R"*! is an n-ADR
(Ahlfors-David regular) set if there exists a uniform constant C' such that

%7’" <o(Az,r)) < Cr"

for every x € E and every r € (0,diam(F)), where diam(FE) may be infinite.

DEFINITION 1.8. — Following [7, 8], we say that an n-ADR set E C
R™*! is UR (uniformly rectifiable) if it contains “big pieces of Lipschitz
images” (BPLI) of R™: there exist constants §, A > 0 such that for every
x € E and r € (0,diam(FE)) there is a Lipschitz mapping p = pz,: R" —
R™*+1 with Lipschitz norm no larger that A, such that

HYENB(z,r)Np({y e R™: Jy| <r})) = 0r".

DEFINITION 1.9. — Following [21], we say that a domain @ C R"T! js
NTA (nontangentially accessible) if

(1) Q satisfies the Harnack chain condition: there exists a uniform con-
stant C' such that for every p > 0, A > 1 and X, X' € Q with
§(X),0(X’) = pand | X —X'| < Ap there exists a chain of open balls
Bi,...,BN CQ,N < C(A),withX € By, X' € By, BxNBj11 # 0
and C~!diam(By) < dist(By, 9Q) < C diam(By),

(2) Q satisfies the corkscrew condition: there exists a uniform constant
¢ such that for every surface ball A == A(x,r) with z € 0 and 0 <
r < diam(0€2) there exists a point Xa € Q such that B(Xa,cr) C
B(z,r)NQ,

(3) R\ Q satisfies the corkscrew condition.

ANNALES DE L’INSTITUT FOURIER
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1.3. Dyadic cubes; Carleson and sparse collections

THEOREM 1.10 (E.g. [5, 19, 24]). — Suppose that E is an ADR set.
Then there exists a countable collection D,
D= U]D)k” Dy = {QF: a € Ay}
keZ
of Borel sets (that we call dyadic cubes) such that
(1) the collection D is nested: if Q, P € D, then @ N P € {0, Q, P},
(2) E=Ugep, Q for every k € Z and the union is disjoint,
(3) there exist constants ¢; > 0 and C; > 1 with the following property:
for any cube Q¥ there exists a point z& € QF (that we call the center
point of Q¥ ) such that

(1.1) A(zh,e127%) C QL C AL, C127%) = Ag,
(4) if Q,PeD and Q C P, then
(1.2) Ag C Ap,

(5) for every cube QF there exists a uniformly bounded number of
disjoint cubes ng’l such that Q% = U, QE;H, where the uniform
bound depends only on the ADR constant of E,

(6) the cubes form a connected tree under inclusion: if Q, P € D, then
there exists a cube R € D such that QU P C R.

Remark 1.11. — The last property in the previous theorem does not
appear in the constructions in [5, 19, 24|, but it is easy to modify the
construction to get this property. The basic idea in the construction in [19]
is to choose first the center points 2%, then define a partial order among
those points and finally build the cubes by using density arguments. Thus,
if we simply choose the center points z* in such a way that there exists
a point 29 € (Nez{zk}a, then by (1.1) for any r > 0 there exists a cube
Q. that contains the ball B(zp,r). This implies the last property in the
previous theorem.

Notation 1.12.

(1) Since the set F may be bounded or disconnected, we may encounter
a situation where QF = QY although k # . In particular, in the
second to last property of Theorem 1.10 there might exist only one
cube ng‘l which equals Q¥ as a set. Thus, we use the notation D(E)
for the collection of all relevant cubes @ € D, i.e. if Q¥ € D(E),
then C127% < diam(E) and the number & is maximal in the sense

TOME 70 (2020), FASCICULE 4
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that there does not exist a cube Q% € D such that Q4 = QF for
some [ > k. Notice that the number k is bounded for each cube
since the ADR condition excludes the presence of isolated points in
E. This way in D(F) it is natural to talk about the children of a
cube @ (i.e. the largest cubes P C ) and the parent of a cube @
(i.e. the smallest cube R 2 Q).

(2) For every cube QF :== Q € D, we denote £(Q) :=27% and 2z = 2.
We call £(Q) the side length of Q.

(3) For every @ € D, we denote the collection of dyadic subcubes of @
by Dg.

DEFINITION 1.13. — Suppose that A > 1. We say that a collection
A C D is A-Carleson (or that it satisfies a Carleson packing condition) if

Y. (@) < Ao(Qo)
QEA,QCQo

for every cube Qg € D.

DEFINITION 1.14. — Suppose that X € (0,1). We say that a collection
A C D is A-sparse if for every cube Q) € A there exists a subset Eg C Q
satisfying

(1) EgNEgy =0 if Q # Q" and
(2) 0(Eq) 2 Aa(Q).

The following result will be useful for us with some technical estimates.

THEOREM 1.15. — A collection A C D is A-Carleson if and only if it is
%—sparse.

Although it is very easy to show that sparseness implies the Carleson
property, the other implication is not obvious. For dyadic cubes in R,
it was first proven by I. Verbitsky [26, Corollary 2] and the result was
later rediscovered by A. Lerner and F. Nazarov with a different proof [23,
Lemma 6.3]. For general Borel sets, the result was proven by T. Hénni-
nen [14, Theorem 1.3]. Since the dyadic cubes in Theorem 1.10 are Borel
sets, the result of Hanninen is suitable for us.

In addition to sparseness arguments, we use a discrete Carleson em-
bedding theorem (Theorem A.1) to prove that local bounds imply global
bounds. In fact, we could use the embedding theorem instead of sparseness
arguments throughout the paper but this would give us slightly weaker
estimates.

ANNALES DE L’INSTITUT FOURIER
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DEFINITION 1.16. — Let A C D be any collection of dyadic cubes. We
say that a cube P € A is an A-maximal subcube of Qg if there do not exist
any cubes P’ € A such that P C P’ C Q.

1.4. Corona decomposition, Whitney regions and Carleson
boxes

DEFINITION 1.17. — We say that a subcollection S C D(E)) is coherent
if the following three conditions hold.

(1) There exists a maximal element Q(S) € § such that Q@ C S for
every Q € S.

(2) If @ € S and P € D(F) is a cube such that Q C P C Q(S), then
also P € S.

(3) If Q € S, then either all children of ) belong to S or none of them
do.

If S satisfies only conditions (1) and (2), then we say that S is semicoherent.

In this article, we do not work directly with Definition 1.8 but use the
bilateral corona decomposition instead:

LEMMA 1.18 ([18, Lemma 2.2]). — Suppose that E C R"*! is a uni-
formly rectifiable set of codimension 1. Then for any pair of positive con-
stants 1 < 1 and K > 1 there exists a disjoint decomposition D(E) = GUB
satisfying the following properties:

(1) The “good” collection G is a disjoint union of coherent stopping
time regimes S.

(2) The “bad” collection B and the maximal cubes Q(S) satisfy a Car-
leson packing condition: for every @ € D(FE) we have

Yo @)+ D o(QS) < Coro(Q).
Q'CQ,Q'eB §:Q(S)CQ

(3) For every S, there exists a Lipschitz graph I's, with Lipschitz con-

stant at most 1, such that for every Q € S we have

sup dist(z,I's) + sup dist(y, E) < nl(Q),
TEAY, yeBLMT's

where By, = B(zq, K{(Q)) and Ay, == By N E.

The proof of this decomposition is based on the use of both the unilateral
corona decomposition [7] and the bilateral weak geometric lemma [8] of
David and Semmes. The decomposition plays a key role in this paper.

TOME 70 (2020), FASCICULE 4
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In [18, Section 3], the bilateral corona decomposition is used to construct
Whitney regions Ug and Carleson boxes Tg with respect to the dyadic
cubes Q € D(F) using a dyadic Whitney decomposition of R**!\ E.
The Whitney regions are a substitute for the dyadic Whitney tiles @ x
(£(Q)/2,£(Q)) and the Carleson boxes are a substitute for the dyadic boxes
Q x (0,4(Q)) in RT‘l. We list some of their important properties in the
next lemma which we use constantly without specifically referring to it each
time.

LEMMA 1.19. — The Whitney regions Ug, Q € D(E), satisfy the fol-
lowing properties.

(1) The region Ug is a union of a bounded number of slightly fattened
Whitney cubes I* := (1+47)I such that £(Q) ~ £(I) and dist(Q, I) ~
£(Q). We denote the collection of these Whitney cubes by Wg.

(2) The regions Ug have a bounded overlap property. In particular, we
have ), |Uq,| < |U,; Uq,| for cubes Q; such that Q; # Q; if i # j.

(3) IfUg NUp # 0, then ¢(Q) ~ £(P) and dist(Q, P) < 4(Q).

(4) For every Y € Ug we have 6(Y) = £(Q).

(5) For every Q € D(E), we have |Ug| ~ £(Q)" ! ~ £(Q) - 0(Q).

(6) If Q € G, then Ug breaks into exactly two connected components
UG and Uy such that |US| ~ |Ug|.

(7) If @ € B, then Ug breaks into a bounded number of connected
components U, such that |Uf| = |UZ?| for all i and j.

(8) If diam(E) = oo, then Ugep(g) Ug = Q.

(9) If diam(FE) < oo, then there exists a point zy € E and a constant
C > 1 such that B(z, C-diam(E))\E C Ugep(p) Uq- The constant
C can be made large but this makes the implicit constant in the
bounded overlap property large as well.

For every @ € G, the components Ug and U, have “center points” that
we denote by X 5 and X Q> respectively. We also set Yét =X g, where QNQ is
the dyadic parent of @ unless Q@ = Q(S), in which case we set @ = Q. We
use these points in the construction in Section 5.1. For any cube @ € G,
the collection Wg breaks naturally into two disjoint subcollection W5 and

For every Q € D(E), we define the Carleson box as the set

Tg = int U Uqg
QIEDQ

ANNALES DE L’INSTITUT FOURIER
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For each A C D(E), we set

Q4 = int U Ug
Q' eA

1.5. Local BV

DEFINITION 1.20. — We say that a function f € L () has locally
bounded variation (denote f € BW.(?)) if for any bounded open set
U C Q such that U C Q we have

sup //f )div ¥ (Y)Y < oc.

q/ecl(U)
W]l o0 <1

The latter expression can be shown to define a measure, by the Riesz
representation theorem. We have the following;:

THEOREM 1.21 ([10, Section 5.1]). — Suppose that f € BVio.(?). Then
there exists a Radon measure u on ) such that

w(U) = sup //f d1v\Il (Y)dY.
\Ifecl(U)

I oo <1

for any open set U C Q; we call u(U) the total variation of f on U.

Abusing notation, for an open set U C {2, we shall write

- / VY)Y,
U

which should not be mistaken for a usual Lebesgue integral. Indeed, we
may have situations where A C B and |A| = |B| but [[, [Vf(Y)|dY <
[l [VF()[dY.

In particular, if f € BVioc(Q2), the sets U, Uy, ..., U C § are open and
U c |, Ui, then

(1.3) //U LSINEDS //U IVFY)aY

Remark 1.22. — We emphasize that we write |V f|dY to indicate the
variation measure of f, which is denoted by ||Df| in [10]; thus, for f €
BViee(Q2), and for any open set U C Q, we let [[; |V f|dY" denote the total
variation of f over U. We shall continue to use this (mildly abusive) nota-
tional convention in the sequel, when working with elements of BVj,.(2).

TOME 70 (2020), FASCICULE 4
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1.6. C and Cp

For every k € N, we let Fj be the ordered pair (E, k). In this section, we
let Qo = E be the maximal dyadic cube if E is a bounded set. We define
the operators C and Cp by setting

D= ] VO

Co(f)(z) = sup wr // Y)|dY,
QeD*,zeQ
where

D* D(E), if diam(F) = o0
T\ D(B) U{Fy: k=M, Ag+1,...}, if diam(E) < oo

and

Tr, = B(z,2" diam(FE)), ((Fy,) = 2" diam(E)
for some fixed point zg € E and a number Ay such that Tg, C T, . We
will call also the pairs Fj cubes although their actual structure is irrelevant
and we will interpret © € Fj simply as x € E.

Usually these functions are not pointwise equivalent but we only have
the estimate Cp(f)(z) < C(f)(x) for every x € E (this follows from the
ADR property of E and the fact that Ty C B(zg,C¥(Q)) for a uniform
constant C'). However, in LP sense, these functions are always compara-
ble. This can be seen easily from the level set comparison formula that
we prove next. This comparability is convenient for us since we construct
the approximating function ¢ in Theorem 1.3 with the help of the dyadic
Whitney regions. Thus, it is more natural for us to prove the desired LP
bound for Cp(Vy) instead of C(Vy). We prove the comparison formula
by using well-known techniques from the proof of the corresponding for-
mula for the Hardy—Littlewood maximal function and its dyadic version [9,
Lemma 2.12].

LEMMA 1.23. — Suppose that f € BVio.(£2). Then there exist uniform
constants A; and As (depending on the dimension and the ADR constant)
such that for every A > 0 we have

oc({x e E:C(Vf)(x) > A1A}) < Ay-o({z € E: Cp(Vf)(x) > A}).
In particular, |C(f)||1r(g) < AlAé/pHCD(f)HLp(E) for every p € (1,00).

Proof. — We first note that if r > diam(FE), then by the definition of Cp
we have the bound - ffB @z | VY)Y S Cp(Vf)(x). Thus, we may

ANNALES DE L’INSTITUT FOURIER



UNIFORM RECTIFIABILITY AND e-APPROXIMABILITY IN LP 1607

assume that the balls in this proof have uniformly bounded radii < diam(E)
and the cubes belong to D(E). Naturally, we may also assume that the right
hand side of the inequality is finite.

We notice that if Cp(f)(z) > A, then there exists a cube @ € D(F) such
that € Q and ﬁ ffTQ [VF(Y)|dY > A. By the definition of Cp(f), we

also have Cp(f)(y) > A for every y € Q. In particular, we have

{x € E: Cp(Vf)(z) >N} = UQ

for disjoint dyadic cubes @;. We now claim that if A; is large enough, then
(1.4) {z € E: C(V)(z) > 412} €| 24,

where Ag, is the surface ball (1.1). Suppose that y ¢ |J, 2Aq, and let r > 0.
Let us choose k € Z so that 281 < r < 2%. Now there exist at most K
dyadic cubes Ry, Ra, ..., Ry, such that £(R;) = 2¥ and RjNA(y,r) # 0 for
every j = 1,2,...,m. We notice that none of the cubes R; can be contained
in any of the cubes Q; since otherwise we would have y € 2Ag, C 2Aq,
by (1.2). Thus, we have E(le)n ffTRj [VA(Y)|dY < X for every j. We can

use a straightforward geometric argument to show that B(y,r) C U;n:l TR,
(see [18, p. 2353-2354]). Hence, since r ~ {(R;) for every j, we have

1 (1.3) ™ 1
_ < <
= o VIO Y A VA £

and y ¢ {z € E: C(Vf)(x) > A1 A} for a large enough A;. In particu-
lar, (1.4) holds and we have

o(fo € B: C(Vf)(@) > AN} < Y 0(240,)

SZU(QJ

=0 <U Qi> =o({z € E: Co(Vf)(z) > A}).
The L? comparability C(Vf) and Cp (Zv £) follows immediately:
TN ey =p [ W ol € B5 C(TA(@) > A
< Agp/ooo N lo({z € B: ACo(V)(x) > A})dA

= A11)A2||CD(Vf)||I[),p(E)~ O
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1.7. Cones, non-tangential maximal functions and square
functions

We recall from [18, Section 3] that the Whitney regions Ug and the
fattened Whitney regions U’Q, Q@ € D, are defined using fattened Whitney
boxes I* := (1+7)I and I** := (14 27)I respectively, where 7 is a suitable
positive parameter. Let us define the regions ij using even fatter Whitney
boxes I'*** := (1 + 37)W.

DEFINITION 1.24. — For any x € E, we define the cone at x by setting
(1.5) Iz)= [J Ue.
QeD(E),Q3x

We define the non-tangential maximal function N,u and, for u € lef (Q),
the square function Su as follows:

Nou(z) = sup |[u(Y)], xz€E,
Yel'(x)

1/2
(/ |vu(Y)|25(Y)1—”dY> , z€E.
()

The Hytonen—Rosén techniques in [20, Section 6] rely on the use of local
S <N and N < S estimates from [15]. Although a local S < N estimate
holds also in our context [17], a local N < S estimate does not hold without
suitable assumptions on connectivity. Thus, we cannot apply the Hytonen—
Rosén techniques directly but we have to combine them with the techniques
created in [18].

In Section 5 we consider the following modified versions of I'(x) and N.u
to bypass some additional technicalities:

Su(x)

DEFINITION 1.25. — For every x € E and o > 0 we define the cone of
a-aperture at x T (z) by setting

(1.6) L) = |J U Ue
QED(E),Qax PeD(E),
L(P)=L(Q),
aAQﬁP;é@

Using the cones T'y(x), we define the non-tangential maximal function of
a-aperture N'u by setting N u(z) = supy¢r,, (2 [w(Y)]-

Remark 1.26. — If the set F is bounded, then the cones (1.5) and (1.6)
are also bounded since we only constructed Whitney regions U such that
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diam(U) < diam(FE). Thus, if E is bounded, we use the cones
[(z) := [(z) U B(z, C - diam(E))®
and Ty () == Tqa(z) U B(20, Cy - diam(E))°
for a suitable point zy € E and suitable constants C' and C,, instead.

The usefulness of these modified cones and non-tangential maximal func-
tions lies in the fact that for a suitable choice of « the cone I'y(x) contains
some crucial points that may not be contained in I'(z) and in the LP sense
the function N&u is not too much larger than N,u. We prove the latter
claim in the next lemma but postpone the proof of the first claim to Sec-
tion 5.

LEMMA 1.27. — Suppose that u is a continuous function and let o > 1.
Then ||N.ul|pr(g) o [[Nul|1r gy for every p € (0,00).

Proof. — We only prove the claim for the case diam(FE) = oo as the
proof for the case diam(E) < oo is almost the same.

Since the set E is ADR, measures of balls with comparable radii are
comparable. Using this property makes it is simple and straightforward to
generalize the classical proof of C. Fefferman and E. Stein [11, Lemma 1]
from R} to Q to show that [[Noyul|Ls(m) ~a.s [Nsul| L) where

Nou(@)= sup [u(Y)|, Ty(x):={Y€Q: dist(z,Y) <7 5(Y)}.
Yer,(z)

By the definition of the cones I'(z), there exists yo > 0 such that I, (z) C
I (z) for every x € E. Thus, we only need to show that 'y (x) C INX, (z) for
some uniform v = y(«) for all z € E since this gives us the estimate (x) in
the chain

(%)
[Nl Le(my < |NZull ooy < INyulloe(m)

Ry o Ny ulleey < | Neull Lo (g -

Suppose that Q, P € D(E), z € Q, £(Q) = ¢(P) and aAg N P # (). By the
construction of the Whitney regions, for every Y € Up we have

0(Y) = L(P) =~ dist(Y, P).

On the other hand, since aAg NP # () and ¢(P) = ¢(Q), we know that for
any y € P we have

dist(z,y) < al(Q) = al(P).
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Let us take any z € P. Now for every Y € Up we have
dist(z,Y) < dist(z, 2) + dist(z,Y) < al(P) + £(P) S ol(P) =~ - 6(Y).

In particular, there exists a uniform constant v = y(«) such that I'y(z) C
Ly (x). O

2. Principal cubes

As in [20], we define the numbers Mp(N,u)(Q) by setting

Mp(N.u)(Q) = sup ][ Nu(y)do(y
QCReD
for every @ € D(E) =: D. We shall use a collection Z C D(E) = D such
that

1)  T={Q:icN}, QicQn ¥i JQi=E,

where N = {1,2,...,n9} for some ng € N if E is bounded, and N = N oth-
erwise. This type of a collection exists by the last property in Theorem 1.10
and by the properties of dyadic cubes, the collection is Carleson. Let us
construct a collection P C D of "stopping cubes“ using the construction
described in [20, Section 6.1]. We set Py := Z and consider all the cubes
Q' € D(E) \ Py such that

(1) for some @ € Py we have Q' C @ and

(2.2) Mp(N.u)(Q) = 'Scuzgeﬂ)][ N.u ) > 2Mp(N,u)(Q),

(2) @' is not contained in any such Q" C Q such that either Q" € Py
or (2.2) holds for the pair (Q", Q).

We denote by P; the collection we get by adding all the cubes Q' satisfying
both (1) and (2) to Py. We then continue this process for P; in place of Py
and so on. We set P := |J;—, Pr. We also set

mp@Q = the smallest cube Qg € P such that Q C Q.

Here we mean smallest with respect to the side length. Naturally, we have
mpQ = Q for every Q € P, and since Z C P, for every cube @Q € D there
exists some cube Pg € P such that @ C Py.
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Remark 2.1. — The collection P is an auxiliary collection that helps us
to simplify the proofs of several claims. We use it in the following way.
Suppose that we have a subcollection W C D and we want to show that W
satisfies a Carleson packing condition. Let Qg € D. Now for every @ € W
such that @ C Qq, we have either 7pQ = 7pQqg or mpQ) = P = wpP for
some P € P such that P C mpQy. In particular, we have

Yo e@= ). @+ > (@)

QEW,QCQo QeEW, PeP,PCpQo QEW,
TP Q=mp Qo Tp Q=P

=Io+ >, Ip.
PeP,PCrpQo
We prove in Lemma 2.2 below that the collection P satisfies a Carleson

packing condition. Thus, if we can show that I, < o(Qo) for an arbitrary
cube Qp € P, we get

> Irs ) a(P)Sa(Qo)
PEP,PCpQo PEP,PCrpQo
Thus, to show that the collection W satisfies a Carleson packing condition,
it is enough to show that I, < o(Qo) for every cube Qo € D. The useful-
ness of this simplification is that if @ € D\ P and 7pQ = P, then by the
construction of the collection P we have

Mo (N.u)(Q) < 2Mp(N,u)(P).
We use this property several times in the proofs.

For any cube Qo € D, we say that R € P is a P-proper subcube
of Qo if we have Mp(N,u)(R) > 2Mp(N.u)(Qp) and Mp(N,u)(R') <
2Mp(N.u)(Qo) for every intermediate cube R C R’ C Q.

LEMMA 2.2. — For every Qo € D(E) we have

(2.3) Y o(P) S a(Qu)
PEP,PCQo

Proof. — Let us start by noting that we may assume that Qg € P since
otherwise we can simply consider the P-maximal subcubes of Qy. To be
more precise, the P-maximal subcubes of @)y are disjoint by definition and
thus, if we sum their measures together, it is at most o(Qp). Now, if Q € P
and @ C @, we know that @) is one of the P-maximal subsubes of Qg or it
is contained properly in one of them. Hence, if we prove the estimate (2.3)
for the case Qg € P, it implies the same estimate even with the same
implicit constant for the case Qg ¢ P.
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Suppose first that we have a collection of disjoint cubes Q' C @ that
satisfy Mp(N,u)(Q') > 2Mp(N,u)(Q). Then, for every such cube Q' we
have Mp(N,u)(Q") > fQ N,udo and thus, for every point x € Q' we get

Mp(1gN,u)(z) =  sup ][ N,udo
ReD,xe RCQ

> sup ][ N,udo
ReD,Q'CRCQ
= Mp(N.u)(Q") > 2Mp(N.u)(Q).

In particular, by the L' — L** boundedness of My we have

ZU(QI) <o({x € E: Mp(lgN,u)(x) > 2Mp(N.u)(Q)})
Qo
< QM;H%N*UHLI(U) = o N-do_o(Q) < (@)
p(Nxu)(Q) M(N.u)(Q) 2 2

We notice that if R € P\ Z, then R is a P-proper subcube of some cube
Q@ € P. To be more precise, if R € P\ Z, then there exists a chain of cubes
R=Ri C Ry C ... C Ry, R; € P, such that for every ¢ =1,2,...,k —1
R; is a P-proper subcube of R;+1 and Ry € Z. If such a chain of length
k from R to @ exists, we denote R € Pg. By using the property (2.4) k
times, we see that for each Q € P we have

Soems Y Y o<y Y o

k k—1 k §C k-1
ReP), RePl ! SEPY.SCR ReP)

(2.5) <<y Y eR)< ”;i”

1
ReP,

(2.4)

Now it is straightforward to prove the packing condition. We have

Z o(P) = Z o(P)+ Z o(P)

PeP,PCQo PEZ,PCQo PeP\Z,PCQo

<Cro(@)+ >, > > oP

QET,QCQo k=1 PeP

Y Cro(Qo) + 3 Z”;ff)

QEL,QRCQo k=1

=Cro(Q)+ Y, (@) < Czo(Qo) + Czo(Qo)
QEZ,QCQo

which proves the claim. (|
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3. “Large Oscillation” cubes

Before constructing the approximating function, we consider two collec-
tions of cubes that will act as the basis of our construction. In this section,
we show that the union of the collection of “large oscillation” cubes

R = {Q € D: oscu > eMp(N,u)(Q) for some z} .
U7/
Q
and the collection of “bad” cubes from the corona decomposition satis-
fies a Carleson packing condition. We apply this property in the technical
estimates in Section 5.

LEMMA 3.1. — For every Qo € D(E) we have

(3.1) > o8 5 5o(Q)

RER,RCQo
Proof. — We break the proof into three parts.
Part 1: Simplification. — First, by Remark 2.1, it is enough to show that

> o(R) S 50(@0).

RER,RCQo

mp R=mp Qo
Also, since the “bad” collection in the bilateral corona decomposition is
Carleson, it suffices to consider the “good” cubes in R, i.e. the collection
R N G. Thus, we may assume that Qg € R N G since otherwise we may
simply consider the (R N G)-maximal subcubes of )y similarly as with the
collection P in the proof of Lemma 2.2. Furthermore, since the Whitney
regions Ug of the “good” cubes R break into two components Ug and Uy,
it is enough to bound the sum

> a(R) Qo)
RERT,RCQo
mp R=mpQo

where RT := {Q € RNG: oscys > eMp(N,u)(Q)}, as the arguments for
the corresponding collection R~ are the same.

Since Qo € G, there exists a stopping time regime Sy = Sp(Qo) such that
Qo € Sp. We note that if we have Q C Qg for a cube Q € R™, then either

Q@ € Sy or, by the coherency and disjointness of the stopping time regimes,
Qo € S for such a S that Q(S) € Qo. Let & = &(Qp) be the collection of
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the stopping time regimes S such that Q(S) € Q. Then we have

Y oR) = > o(R)+ > Y R

RERT,RCQo RERTNSy,RCQo Se6 RERTNS,RCQo
mp R=mpQo mp R=mpQo mp R=mpQo
= IQO + IIQO.

Let us show that if Io, < 0(Qo) for every Qo € D, then Ilg, S o(Qo)
for every Qo € D. Suppose that Q@ € S € &. Since Q(S)  Qo, we have
mpQ = mpQo only if mpQ = TpQ(S) = mpQp. Thus, it holds that

I, = Z Z o(R) < Z Z o(R)

S€6 RERTNS,RCQo Se6 RERTNS,RCQo
mp R=mpQo mp R=npQ(S)

=Y Ios)

Se6

<Y o(Q(S))

Se6

< 0(Qo)

by the Carleson packing property of the collection {Q(S)}s. Hence, to
prove (3.1), it suffices to show Ig, < o(Qo).

Part 2: §(Y) < D(Y) in (7;5 — Let A C G be a collection of cubes
and set

Q% = int Uﬁa = int U U I

QeA QeA IGWZE

and Dy (Y) = dist(Y,09%). Recall the definitions of I** and I*** from
Section 1.7. Let us fix a cube P € A and a point Y € ﬁ; = UIEW; I*.
We now claim that §(Y) < D4(Y). We notice first that although the
regions IAJZS may overlap, we have £(Q) = £(Q’) = £(P) for all overlapping
regions 65 and ﬁa such that Y € ﬁg NUZ, (see (3.2), (3.8) and related
estimates in [18]). Also, the fattened Whitney boxes I*** may overlap, but
we have £(I***) = L(I) = 4(J) = L(J***) = ¢(P) Y € "™ NJ**. Bya
simple geometrical consideration we know that

dist(Y, 9I"**) ~, £(I).
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It now holds that D4(Y) = dist(Y, 9I***) for some I*** 5 Y or DA(Y) >
dist(Y, 9I***) for every such I***. In particular, we have

DY) > inf  inf dist(Y,01"")
QeAYeU, IEW]

~ inf  inf ()= inf 4(Q)={(P).
QEAX€U516N5 QeAYeUY,

Now we can take any I € W} such that Y € I** and notice that ¢(P) ~
L) =~ (1) ~ dist(I*,00) =~ dist(Y,09). Hence Do(Y) = §(Y) for
every Y € U;‘.
Part 3: The sum Ig,. — To simplify the notation, let us write
R(J)r = {R erR*t NSy: RC Qo,mpR = 7T73Q0}.

We consider the region 2***

o | OF
ReRY
and set D(Y) = dist(Y,0Q***) for every Y € Q. Suppose that R € R{.
By Part 2, we know that
(3.2) 5(Y)S D(Y)  for every Y € U3

We also notice that

O = int U IAJ'JISz C int U U I'(z) |,

ReRS ReR{} =€R

so we have
sup |u(X)|= sup sup [|u(X)|
XeQr** RERS’ X€ﬁ+R
< sup inf Nyu(x)
Rer} TER
(3.3) < sup Mp(N.u)(R) < Mp(Nou)(mpQo).
ReERY

In the last inequality we used the definition of R (see Remark 2.1).
By [18, (5.8)] (or [16, Section 4]), we have

i
Ugr

(3.4) <oscu> <UR) //a IVu(y)Ps(y)dy

for every R € R*. Notice also that if R € RJ, then by the definition
of the numbers Mp(N,u)(Q) we have Mp(N.u)(mpQo) < Mp(N.u)(R)
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simply because R C mpQo. Thus, using (A) the definition of the num-
bers Mp(N,u)(Q), (B) the ADR property of E, (C) the definition of the
collection RT and (D) the bounded overlap of the regions U;; we get

(35)  Mp(New)(mpQ@o)lo, € > Mp(N.u)(R)*(R)
RERY

S My (RPeR)

RERY
(C)(34)1
5 3 [, wurrseray
RR+
(32)1
< Z// Vu(Y)[2D(¥)dy
RR+

(D)
< 5 [ IVu)PDeay
S * %k *

Since @y € R, we notice that the collection RBL forms a semi-coherent sub-
regime of Sy. Thus, by [18, Lemma 3.24], the set Q*** is a chord-arc domain
(i.e. NTA domain with ADR boundary). Furthermore, by [2, Theorem 1.2],
or** is UR. Since Q*** C B(zq,, C4(Qo)) for a suitable structural con-
stant C' (see [18, (3.14)]), the ADR property of 92 and [18, Theorem 1.1]

give us

// [Vu(Y | D(Y)dY Hu||L°° (Qrrx) a(Qo)

(3.3)
< i
~ 2

(3.6) . Mp(N.u)(rpQo)? - o(Qo).

Since the numbers Mp(N,u)(mpQo)? cancel from (3.5) and (3.6), this con-
cludes the proof of the lemma. O

Since the bad collection B in the bilateral corona decomposition satisfies
a Carleson packing condition, we immediately get the following corollary:

COROLLARY 3.2. — For every Qo € D(F) we have

(3.7 > o5 o).

RG(RUB) 7Rg QO
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4. Generation cubes

For every stopping time regime S, we construct a collection of generation
cubes G(S) as in [18, Section 5] but with modified stopping conditions. For
clarity, let us repeat the key details and definitions from [18, Section 5]
here. We set Q° := Q(S) and Gy := {Q°}, start subdividing Q° dyadically
and stop when we reach a cube @) € Dgo for which at least one of the
following conditions holds:

(1) Qis not in S,
(2) Ju(Yy) = u(Ygo)| > eMp(N.u)(Q),
() [u(Yg) —u(Yg)| > eMp(Nau)(Q).

The points Yét were defined in Section 1.4. We denote the collection of
maximal subcubes of Q° extracted by these stopping time conditions by
Fi = F1(Q%) and we let G; = G1(Q°) := F; NS be the collection of first
generation cubes. We notice that the collection of subcubes of Q° that are
not contained in any stopping cube @ € F; form a semicoherent subregime
of S. We denote this subregime by S’ = S'(Q°).

If G, is non-empty, we repeat the construction above for the cubes Q' €
G but replace YQi0 by Yéﬁ in conditions (2) and (3). Continuing like this
gives us collections Gy for k > 0 (notice that starting from some k the
collections might be empty), where

Ge(@) = |J  Gu@".
QFeGL(QY)
To emphasize the dependency on S, we denote

Gr(S) = Gr(Q(S)),
and we set the collection of all generation cubes to be
G =[]JG(s).
s
By this construction, we have
(4.1) s= U s
QeG(S)

for each stopping time regime S, where §'(Q) is a semicoherent subregime
of § with maximal element @ and the subregimes §’(Q) are disjoint.

Our next goal is to prove that the collection G* satisfies a Carleson
packing condition:
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LEMMA 4.1. — For every Qo € D we have

(4.2)

> o(8) 5 0@

SeG*,SCQo

Before the proof, let us make two observations that help us to simplify
the proof.

(1)

By arguing as in the proof of Lemma 3.1, we may assume that
Qo € G* and it suffices to show that

1
U(S) 5 ?U(Qo)a
SeG*NS),SCQo
TpS=mpQo

where Sy is the unique stopping time regime such that Q¢ € Sy.
For every k > 0 and S € G(Sp), let G1(S) C G(So) be the G*-

children of S, i.e. the cubes P € Gj11(Sp) such that P C S. For
each such S we have

1

My(Na)(8? S (@) S & // Vu(Y)25(Y)a,
QEG1(S) € Q7(s)
TP Q=mp Qo

where .7 (S) = §'(S)N{Q € D: 7pQ = 7pQo} is a semicoher-
ent subregime of Sy and (25 (g) is the associated sawtooth region
(see (1.4)). The estimate (4.3) is a counterpart of [18, Lemma 5.11]
and it follows easily from the original proof. To be a little more
precise, instead of having &® < 100[u(Y) — u(Y§)[? for every
Q € G1(S) as in [18, (5.13)], we have

£ Mp(Nou)(S)? < 2Mp(Now)(Q) < Ju(Yg) — u(Yy)[?

for every @ € G1(S). The rest of the proof works as it is.

Proof of Lemma 4.1. — Let us follow the arguments in the proof of [18,
Lemma 5.16] and write

Y. =3 > o
S€EG*NSo,SCQo k=20 S€Gk(Qo)
mp S=mp Qo mpS=mpQo

SCIED D YD DRI EPCIRS
k218'€Gr_1(Qo) S€G1(S’)
mp S=mpQo
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Using (4.3) and the definition of the sawtooth regions gives us

W S 5 X [ munps)

k>21S"€Gr-1(Qo) F(87)

(4.9 <Y ¥ 2 vumrsyar
k>1S'€Gr_1(Qo) Ses/(sr) Us
mpS= WPQO

Let us denote Qg := USGG* Us where G§, = {S € D: mpS = mpQo} N

Uss1 Usrear 1o S’ (9" By the construction, U~ Ugeq, (g, S'(5")
is a coherent subregime of Sy with maximal element Qo and thus, Gg,

is a semicoherent subregime of Sy. In particular, the sawtooth region €
splits into two chord-arc domains QF by [18, Lemma 3.24]. Furthermore,
by [2, Theorem 1.2], both 9QF and 9§, are UR. We also note that o C
B(zq,,Cl(Qo)) (see [18, (3.14)]). Thus, since the triple sum in (4.4) runs
over a collection of disjoint cubes, we can use the bounded overlap of the
Whitney regions, [18, Theorem 1.1] and the ADR property of E to show
that

sY Y 2 vupaay

k21858'€eGr_1(Qo) SeS’'(S)
mpS=mpQo
1
S5 [ [vupsyay
13 Q0
< 1 2
S Sl o) 7(@)

Since mpS = mpQo for every S € GY, , by (2.2) we have Mp(N.u)(S) <
2Mp(N,u)(mpQo) for every S € Gp) . In particular:
2

[ul T gy < suUp sup |u(Y)]
SE€Gy, YEUs

< sup inf N,u(z)?
sedy, €9

< sup Mp(N.u)(S)? S Mp(N.u)(mpQo)*.
SeGy,

Since the numbers Mp (N, u)(7pQo)? cancel out, we have proven the Car-
leson packing condition of G*. O
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5. Construction of the approximating function

Before we construct the function, we prove the following technical lemma
related to the modified cones T', () that we defined in Section 1.7. Recall
that

(5.1) To(z)=  (J U Ur
QED(E),Qox PeD(E),
L(P)=£(Q),
OéAQﬂP#@

LEMMA 5.1. — There exists a uniform constant og > 0 such that the
following holds: if Q € D(FE) is any cube and P € G* is a generation cube
such that £(Q) < ¢(P) and Qgi(py N Tg # 0, then X5, YF € Ty, (x) for
every x € Q.

Proof. — We start by noticing that there exists o > 0 (depending only
on the structural constants) such that

(5.2) if P appears in the union (5.1), then also P appears in the same
union,

where P is the dyadic parent of P. Indeed, if we have Q, P € D(E), z € Q,
Q) = £(P) and aAg N P # 0, then also = € Q, £(Q) = {(P) and
aAé N P # (. The last claim follows from the fact that () # aAgNP C
OzAZj N ]5

Let us then prove the claim of the lemma by following the argument in
the proof of [18, Lemma 5.20]. Since Qg/(py N Ty # 0, there exist cubes
P" e §'(P) and Q' C @ such that Ups N Ug: # 0. By the properties of the
Whitney regions, we have dist(Q’, P") < £(Q') = £(P’). Let us consider two
cases:

(1) Suppose that ¢(P’) > £(Q). Then there exists a cube Q" such that
Q C Q" and £(Q") = £(P"). Since Q' C Q”, we have dist(Q", P’) <
dist(Q’, P") < 4(Q") < 4(Q"). Thus, for a large enough «p, we have
Up: C Ty (x) for every € Q and the claim follows from (5.2).

(2) Suppose that £(P’) < £(Q). Then by the semicoherency of S'(P),
there exists a cube P’ € §'(P) such that P’ C P C P and ¢(P") =
Q). Since P’ C P” and Q' C Q, we know that dist(P”,Q) <
dist(P’, Q") < 4(Q") < 4(Q). Thus, for a large enough g, we have
Upr C Ty, (x) for every z € Q. Again, the claim follows now
from (5.2). O
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5.1. Constructing the function in Ty,

In this section we adopt the terminology from other papers (includ-
ing [18]) and say that a component U, is blue if 0SCyi U < eMp(N.u)(Q)
and red if oscy u > eMp(N,u)(Q).

We recall the construction of the local functions g, ¢1 and ¢ from [18,
Section 5]. We start by defining an ordered family of good cubes {Qf}r>1
relative to a fixed cube Q¢ € D. If Qg € G, then Qg € S for some stopping
time regime S and thus, Qo € S; for some subregime in (4.1). In this
case, we set Q1 = Q(S7). If Qo ¢ G, then we let Q1 be any good subcube
of @y such that @1 is maximal with respect to the side length; such a
cube much exist since B is Carleson. Since ()1 € G, we have Q1 € S
for some stopping time regime S, and by the coherency of S, we have
Q1 = Q(S]) for some subregime in (4.1). Once the cube @; has been
chosen in these two cases, we let ()2 be a subcube of maximum side length
in (Dg, NG)\ S and so on. This gives us a sequence of cubes @y, € G such
that £(Q1) = €(Q2) = (Q3) = -+, Qr = Q(Sy) and GNDg, C Us, Si-
We define recursively

k-1
Ar=Qs,  Av=0s\ (4] k=2
i=1

and
k—1
+ . of + . ot
AT =05, AT =050\ U4 ] k=2
j=1
where
s +
QSI; = int U UQ
QES;,
We also set

Qo:=Js, ={JAx and Q7 =[]JAf
k k k

We now define g on Qg by setting
po = Z (“(Yc;k)lA;f + u(YC;k)lA;) .
k

As