We show the existence of a local foliation of a three dimensional Riemannian manifold by critical points of the Willmore functional subject to a small area constraint around non-degenerate critical points of the scalar curvature. This adapts a method developed by Rugang Ye to construct foliations by surfaces of constant mean curvature.
Nour prouvons l’existence d’un feuilletage local d’une variété riemanienne de dimension trois autour des points critiques de la courbure scalaire par les points critiques non dégénérés de la fonctionnelle de Willmore sous la contrainte d’aire petite. On adapte une méthode développée par Rugang Ye pour construire un feuilletage par des surfaces à courbure moyenne constante.
Revised:
Accepted:
Published online:
Keywords: Willmore surfaces, local foliation
Mot clés : Surface de Willmore, feuilletage local
@article{AIF_2020__70_4_1639_0, author = {Lamm, Tobias and Metzger, Jan and Schulze, Felix}, title = {Local foliation of manifolds by surfaces of {Willmore} type}, journal = {Annales de l'Institut Fourier}, pages = {1639--1662}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {70}, number = {4}, year = {2020}, doi = {10.5802/aif.3375}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3375/} }
TY - JOUR AU - Lamm, Tobias AU - Metzger, Jan AU - Schulze, Felix TI - Local foliation of manifolds by surfaces of Willmore type JO - Annales de l'Institut Fourier PY - 2020 SP - 1639 EP - 1662 VL - 70 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3375/ DO - 10.5802/aif.3375 LA - en ID - AIF_2020__70_4_1639_0 ER -
%0 Journal Article %A Lamm, Tobias %A Metzger, Jan %A Schulze, Felix %T Local foliation of manifolds by surfaces of Willmore type %J Annales de l'Institut Fourier %D 2020 %P 1639-1662 %V 70 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3375/ %R 10.5802/aif.3375 %G en %F AIF_2020__70_4_1639_0
Lamm, Tobias; Metzger, Jan; Schulze, Felix. Local foliation of manifolds by surfaces of Willmore type. Annales de l'Institut Fourier, Volume 70 (2020) no. 4, pp. 1639-1662. doi : 10.5802/aif.3375. https://aif.centre-mersenne.org/articles/10.5802/aif.3375/
[1] Bubble tree of branched conformal immersions and applications to the Willmore functional, Am. J. Math., Volume 136 (2014) no. 4, pp. 1107-1154 | DOI | MR | Zbl
[2] Sharp local isoperimetric inequalities involving the scalar curvature, Proc. Am. Math. Soc., Volume 130 (2002) no. 8, pp. 2351-2361 | DOI | MR | Zbl
[3] Regularity theory for mean curvature flow, Progress in Nonlinear Differential Equations and their Applications, 57, Birkhäuser, 2004, xiv+165 pages | MR | Zbl
[4] Foliation by area-constrained Willmore spheres near a non-degenerate critical point of the scalar curvature (2018) (https://arxiv.org/abs/1806.00390, to appear in Int. Math. Res. Not.)
[5] Small surfaces of Willmore type in Riemannian manifolds, Int. Math. Res. Not. (2010) no. 19, pp. 3786-3813 | DOI | MR | Zbl
[6] Minimizers of the Willmore functional with a small area constraint, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 30 (2013) no. 3, pp. 497-518 | DOI | Numdam | MR
[7] Foliations of asymptotically flat manifolds by surfaces of Willmore type, Math. Ann., Volume 350 (2011) no. 1, pp. 1-78 | DOI | MR | Zbl
[8] Concentration of surfaces in a 3-manifold, Int. Math. Res. Not. (2012) no. 24, pp. 5585-5649 | DOI | MR | Zbl
[9] Concentration of small Willmore spheres in Riemannian 3-manifolds, Anal. PDE, Volume 7 (2014) no. 8, pp. 1901-1921 | DOI | MR | Zbl
[10] The Yamabe problem, Bull. Am. Math. Soc., Volume 17 (1987) no. 1, pp. 37-91 | DOI | MR | Zbl
[11] The Willmore flow with prescribed area for a small bubble in a Riemannian manifold, Ph. D. Thesis, Fakultät für Mathematik und Physik Albert-Ludwigs-Universität Freiburg (Germany) (2018) (https://freidok.uni-freiburg.de/data/15447) | Zbl
[12] Some results about the existence of critical points for the Willmore functional, Math. Z., Volume 266 (2010) no. 3, pp. 583-622 | DOI | MR | Zbl
[13] The conformal Willmore functional: a perturbative approach, J. Geom. Anal., Volume 23 (2013) no. 2, pp. 764-811 | DOI | MR | Zbl
[14] Willmore spheres in compact Riemannian manifolds, Adv. Math., Volume 232 (2013) no. 1, pp. 608-676 | DOI | MR | Zbl
[15] Foliation by constant mean curvature spheres, Pac. J. Math., Volume 147 (1991) no. 2, pp. 381-396 | MR | Zbl
Cited by Sources: