We study the variety of quadrics of rank at most in , containing a general projective curve of genus and degree and show that it has the expected dimension in the range . By considering the loci where this expectation is not true, we construct new divisor classes in . We use one of these classes to show that is of general type.
Nous étudions la variété de quadriques de rang au maximum en contenant une courbe projective générale de genre et de degré et nous montrons qu’elle a la dimension attendue dans le cas . En considérant le lieu où la dimension est différente, nous construisons des nouvelles classes de diviseurs dans . Nous utilisons une de ces classes pour montrer que est de type général.
Revised:
Accepted:
Published online:
Keywords: moduli space, singular quadrics
Mots-clés : espace de modules, quadriques singulières
Kadiköylü, İrfan 1
@article{AIF_2019__69_4_1879_0, author = {Kadik\"oyl\"u, \.Irfan}, title = {Variety of singular quadrics containing a projective curve}, journal = {Annales de l'Institut Fourier}, pages = {1879--1896}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {69}, number = {4}, year = {2019}, doi = {10.5802/aif.3284}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3284/} }
TY - JOUR AU - Kadiköylü, İrfan TI - Variety of singular quadrics containing a projective curve JO - Annales de l'Institut Fourier PY - 2019 SP - 1879 EP - 1896 VL - 69 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3284/ DO - 10.5802/aif.3284 LA - en ID - AIF_2019__69_4_1879_0 ER -
%0 Journal Article %A Kadiköylü, İrfan %T Variety of singular quadrics containing a projective curve %J Annales de l'Institut Fourier %D 2019 %P 1879-1896 %V 69 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3284/ %R 10.5802/aif.3284 %G en %F AIF_2019__69_4_1879_0
Kadiköylü, İrfan. Variety of singular quadrics containing a projective curve. Annales de l'Institut Fourier, Volume 69 (2019) no. 4, pp. 1879-1896. doi : 10.5802/aif.3284. https://aif.centre-mersenne.org/articles/10.5802/aif.3284/
[1] On period relations for abelian integrals on algebraic curves, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 21 (1967), pp. 189-238 | MR | Zbl
[2] Geometry of algebraic curves, Volume II., Grundlehren der Mathematischen Wissenschaften, 268, Springer, 2011 | MR | Zbl
[3] Geometry of algebraic curves, Volume I., Grundlehren der Mathematischen Wissenschaften, 267, Springer, 1985 | Zbl
[4] On the existence of curves with maximal rank in , J. Reine Angew. Math., Volume 397 (1989), pp. 1-22 | MR | Zbl
[5] Normally generated line bundles on general curves. II, J. Pure Appl. Algebra, Volume 214 (2010) no. 8, pp. 1450-1455 | DOI | MR | Zbl
[6] The homogeneous ideals of higher secant varieties, J. Pure Appl. Algebra, Volume 158 (2001) no. 2-3, pp. 123-129 | DOI | MR | Zbl
[7] The Kodaira dimension of the moduli space of curves of genus , Invent. Math., Volume 90 (1987), pp. 359-387 | DOI | MR | Zbl
[8] Quadric rank loci on moduli of curves and K3 surfaces, 2017 (https://arxiv.org/abs/1707.00756)
[9] Stable curves and special divisors, Invent. Math., Volume 66 (1982), pp. 251-275 | DOI | MR | Zbl
[10] Macaulay2, a software system for research in algebraic geometry (Available at https://faculty.math.illinois.edu/Macaulay2/)
[11] Curves in projective space, Séminaire de Mathématiques Supérieures, 85, University of Montreal, 1982 | MR | Zbl
[12] On symmetric and skew-symmetric determinantal varieties, Topology, Volume 23 (1984), pp. 71-84 | DOI | MR | Zbl
[13] Tropical independence II: The maximal rank conjecture for quadrics, Algebra Number Theory, Volume 10 (2016) no. 8, pp. 1601-1640 | DOI | MR | Zbl
[14] Maximal rank divisors on (https://arxiv.org/abs/1705.04250, to appear in Ann. Sc. Norm. Super. Pisa, Cl. Sci.)
[15] On the variety of quadrics of rank four containing a projective curve, Boll. Unione Mat. Ital., Volume 2-B (1999) no. 2, pp. 453-462 | MR | Zbl
Cited by Sources: