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VARIETY OF SINGULAR QUADRICS CONTAINING A
PROJECTIVE CURVE

by İrfan KADIKÖYLÜ

Abstract. — We study the variety of quadrics of rank at most k in Pr,
containing a general projective curve of genus g and degree d and show that it has
the expected dimension in the range g − d + r 6 1. By considering the loci where
this expectation is not true, we construct new divisor classes inMg,n. We use one
of these classes to show thatM15,9 is of general type.
Résumé. — Nous étudions la variété de quadriques de rang au maximum k

en Pr contenant une courbe projective générale de genre g et de degré d et nous
montrons qu’elle a la dimension attendue dans le cas g− d + r 6 1. En considérant
le lieu où la dimension est différente, nous construisons des nouvelles classes de
diviseurs dans Mg,n. Nous utilisons une de ces classes pour montrer que M15,9
est de type général.

1. Introduction

One of the celebrated problems of the theory of algebraic curves is the
maximal rank conjecture, which predicts that the natural multiplication
maps

µk : SymkH0 (C,L)→ H0 (C,L⊗k)
are of maximal rank (i.e. either injective or surjective) for a general choice of
C and L in the range where the Brill–Noether number is nonnegative. The
original formulation of the conjecture is due to Harris [11] and it amounts
to showing that the dimension of the variety of hypersurfaces containing
C is the least possible. There are plenty of partial results confirming the
conjecture in different special cases. We refer the reader to [14] for a short
account of these partial results. We note in particular that the quadratic
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1880 İrfan KADIKÖYLÜ

case (i.e. k = 2) of the conjecture, which is also the focus of the present
work, is completely proven in the papers [5] and [13].
In this paper we study the quadratic case of the problem from a refined

perspective by taking also the ranks of the quadrics into account. Precisely,
we let C be a general curve of genus g and ` be a general grd on it. We denote
by Qk(C, `) the projective variety of quadrics of rank at most k containing
the image of C under the map given by the linear series |`|. Since the
codimension of the variety of rank k quadrics in |OPr (2)| equals

(
r−k+2

2
)
,

the expected dimension of Qk(C, `) is equal to

q(g, r, d, k) :=
(
r + 2

2

)
−
(
r − k + 2

2

)
− 2d+ g − 2.

In Theorem 1.1 we confirm this expectation in the range g − d+ r 6 1:

Theorem 1.1. — Let C be a general curve of genus g and ` be a general
grd on C where g − d + r 6 1 and the Brill–Noether number ρ(g, r, d) is
nonnegative. Then the variety Qk(C, `) is of pure dimension q(g, r, d, k). In
particular, Qk(C, `) = ∅ if q(g, r, d, k) < 0.

Some parts of the rank 4 case of Theorem 1.1 are already known in
the literature. The dimension of the variety Q4(C,KC) was computed by
Andreotti and Mayer [1] using the correspondence between rank 4 quadrics
and pencils on the curve. Using the same method Zamora [15] has computed
the dimension of Q4(C, `) for linear systems ` of large degree.
There are valid reasons to expect that the failure loci of Theorem 1.1

give rise to interesting cycles in moduli spaces. In a recent work, Farkas
and Rimányi have studied loci of this form in different moduli spaces and
obtained numerous interesting divisor classes [8]. In an analogous way, we
use Theorem 1.1 to construct new divisors onMg,n:
We fix integers g, n, k such that 4 6 k 6 g − n and

q(g, g − n− 1, 2g − 2− n, k) = −1,

and define the locus

Quadkg,n =
{

[C, p1, . . . , pn] ∈Mg,n

∣∣∣∣∣ ∃ q 6= 0 ∈ I2(C,KC −
∑n
j=1 pj),

rk(q) 6 k

}
,

where we denote by I2
(
C,KC −

∑n
j=1 pj

)
the kernel of the map

Sym2H0

KC −
n∑
j=1

pj

→ H0

K⊗2
C − 2

n∑
j=1

pj

 .
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SINGULAR QUADRICS 1881

It follows from Theorem 1.1 that this locus is a proper closed subset of
Mg,n. In Theorem 1.2 we compute the class of its closure inMg,n. To state
the theorem, we recall the definition of the divisor classes that generate the
Picard group ofMg,n. We denote the first Chern class of the Hodge bundle
by λ and ψj stands for the first Chern class of the pullback of the relative
dualizing sheaf via the section σj :Mg,n →Mg,n+1 corresponding to the
marked point labelled with j. The class of the irreducible singular curves
with a non-separating node is denoted by δirr and δi:S is the class of the
locus of curves whose general element is a reducible curve consisting of two
components of genus g−i and i, where the points labelled by S ⊆ {1, . . . , n}
lie on the genus i component.

Theorem 1.2. — The class of the divisor Quad
k

g,n is given by the fol-
lowing formula:

Quad
k

g,n = αkg,n ·

a · λ+ c ·
n∑
j=1

ψj − birr · δirr −
∑
i,s>0

bi:s ·
∑
|S|=s

δi:S

 ,

where

αkg,n =
g−n−k−1∏

t=0

(
g−n+t

g−n−k−t
)(2t+1

t

) , a = 7g − 9n+ 6
g − n

, c = g + n− 6
g − n

, birr = 1,

and all other coefficients are > 1. For k = 4, we can further compute that

b0:s = s(gs− 3s+ n− 3)
g − n

.

The number αkg,n is the degree of the variety of quadrics of rank at most
k inside the variety of all quadrics in Pg−n−1 (see [12]). If we specialize to
the case of smooth quadrics (i.e. k = g − n) then αkg,n = 1 and we recover
our formula for the divisor class in [14].
We also use a different construction to obtain a divisor class in M15,8.

Since, as pointed out earlier, the quadratic case of the maximal rank con-
jecture holds, for a general element [C, p1, . . . , p8] ∈M15,8 one has that

dim I2

C,KC −
8∑
j=1

pj

 = 2.

Adopting the terminology in [8], we call this pencil degenerate if its inter-
section with the variety of singular quadrics is non reduced. In Theorem 1.3
we show that this condition singles out a divisor inM15,8 and compute the
class of its closure:

TOME 69 (2019), FASCICULE 4



1882 İrfan KADIKÖYLÜ

Theorem 1.3. — The locus of pointed curves defined as

D15,8 :=
{

[C, p1, . . . , p8] ∈M15,8

∣∣∣∣∣ I2(C,KC −
∑8
j=1 pj)

is a degenerate pencil

}
is a divisor and the class of its closure is given by the following formula

D15,8 = 6 ·

39 · λ+ 17 · ψ − birr · δirr −
∑
i,s>0

bi:s ·
∑
|S|=s

δi:S

 ,

where birr, bi:s > 7 for all i, s > 0.

Using the pullback of this divisor to M15,9, we obtain a new result on
the birational geometry ofM15,9:

Corollary 1.4. — The moduli spaceM15,9 is of general type.

Notation

In what follows, we will denote by Qk(C,Pr) the variety of quadrics of
rank at most k containing C, if the embedding C ↪→ Pr is clear from the
context. We will write Qk(C,L) when the grd is complete, i.e. grd = (L, V )
where V = H0(C,L). Finally, Qk(Pr) will stand for the variety of quadrics
having rank at most k in Pr.

2. Proof of Theorem 1.1

It is well known that the Hilbert scheme of curves of genus g and degree
d in Pr has a unique component that parametrizes curves with general
moduli, when ρ(g, r, d) > 0. We let Hd,g,r denote this component. For a
projective curve C ⊆ Pr we define the variety Qk(C,Pr) as

Qk(C,Pr) := P (I2 (C,OC(2))) ∩Qk(Pr) ⊆ |OPr (2)|.

Since it is the intersection of two projective varieties in the projective space,
all its irreducible components have dimension at least q(g, r, d, k). Therefore
Theorem 1.1 will follow once we show that

dimQk(C, grd) 6 q(g, r, d, k)

for a general element [C ⊆ Pr] ∈ Hd,g,r. We show this inductively using
nodal curves that are defined as the union of an element [C ′ ⊆ Pr] ∈
Hd−1,g−1,r, which satisfies Theorem 1.1, and a general secant line of C ′.

ANNALES DE L’INSTITUT FOURIER



SINGULAR QUADRICS 1883

For a given r, the base steps of this inductive argument are the case of
rational normal curves when g− d+ r = 0 and the case of canonical curves
when g − d+ r = 1, since ρ(g, r, d) = 0 implies that g = r + 1 and d = 2r.
In the following lemmas, we confirm Theorem 1.1 for these two base cases.

Lemma 2.1. — Let C be a general curve of genus g. Then Qk(C,KC)
is of pure dimension q(g, g − 1, 2g − 2, k) for all k > 3.

Proof. — Let C be a general curve of genus g. For k = 3, the expected
dimension of Qk(C,KC) is equal to

q(g, g − 1, 2g − 2, 3) = −1.

Therefore we need to show that there are no rank 3 quadrics containing
the canonical model of C. A rank 3 quadric in Pr is ruled by a pencil of
r− 2 planes, where the base locus of the pencil is the singular locus of the
quadric. It is not hard to see that every element of this pencil (considered
with multiplicity two) is a hyperplane section of the quadric (In fact these
hyperplanes are the tangent hyperplanes of the quadric). Therefore if a
rank 3 quadric Q contains C then the pencil of r − 2 planes of Q cuts out
a pencil A on C such that

KC = 2A+ F,

where F is a divisor supported in C ∩ Sing(Q). It follows from the base
point free pencil trick (see [3]) that the Petri map

µ : H0(A+ F )⊗H0(A)→ H0(KC)

has at least one dimensional kernel. However, it is well known that such
curves are special in moduli [9].
For k = 4, we need to show that

dimQ4(C,KC) = q(g, g − 1, 2g − 2, 4) = g − 4.

A rank 4 quadric in Pr has two distinct pencils of r − 2 planes, both of
which sweep out the quadric. Similar to the rank 3 case, the base loci of
these pencils are equal to the singular locus of the quadric. Moreover, the
union of two r − 2 planes belonging to two different pencils is a (tangent)
hyperplane section of the quadric. Therefore if Q has rank 4 and contains
C then the two pencils of r−2 planes cut out two pencils A1, A2 on C such
that

KC = A1 +A2 + F,

where, as before, F is a divisor supported on C ∩ Sing(Q). Using this
correspondence we can estimate the dimension of Q4(C,KC) as follows:

TOME 69 (2019), FASCICULE 4



1884 İrfan KADIKÖYLÜ

To give an element of Q4(C,KC), one has to specify a pencil A of degree
a and a 2-dimensional space of sections of H0(KC −A). Since C is general,
we can use the Brill–Noether theorem to count the parameters that these
choices depend on:

dimQ4(C,KC) = dimW 1
a (C) + dim Gr(2, g − a+ 1) = g − 4.

That finishes the proof for k = 4.
To deal with the case k > 5, we let H̃g be the locus of curves in

Hg,g−1,2g−2, for which we have that dimQ4(C,KC) = g − 4. We define
the incidence variety

I4 :=
{

(Q, [C ⊆ Pg−1])
∣∣ C ⊆ Q} ⊆ Q4(Pg−1)× H̃g.

Using the projection map I4 → H̃g, we compute that

dim I4 = 3g − 3 + g2 − 1 + g − 4 = g2 + 4g − 8.

Since dimQ4(Pg−1) = 4g−7, the dimension of the general fiber of the other
projection map

I4 → Q4(Pg−1)
is equal to g2 − 1. Since all rank 4 quadrics are projectively equivalent,
we conclude that they all contain g2 − 1 dimensional family of canonical
curves.
Next we consider the incidence variety

I :=
{

(Q, [C ⊆ Pg−1])
∣∣ C ⊆ Q} ⊆ |OPg−1(2)| × H̃g.

Since canonical curves are projectively normal, I is a projective bundle over
H̃g. Thus we obtain that I is irreducible of dimension

dim I = 1
2(3g2 + g − 4).

The projection map
I → |OPg−1(2)|

is clearly dominant and thus has relative dimension g2 − 1 over an open
set of |OPg−1(2)|. By the discussion in the preceeding paragraph, quadrics
of rank 4 lie in this open set. Since for every k > 5 the variety Qk(Pg−1)
contains Q4(Pg−1), we can find quadrics of arbitrary rank, which lie in this
open set and hence contain a g2−1 dimensional family of canonical curves.
By projective equivalence, this applies to all quadrics of rank k > 4.
Finally we restrict ourselves to quadrics of rank at most k and consider

the incidence variety

Ik :=
{

(Q, [C ⊆ Pg−1])
∣∣ C ⊆ Q} ⊆ Qk(Pg−1)× H̃g.

ANNALES DE L’INSTITUT FOURIER



SINGULAR QUADRICS 1885

By the above discussion, we know the relative dimension of the map Ik →
Qk(Pg−1). Using this, we compute

dim Ik =
(
g + 1

2

)
−
(
g + 1− k

2

)
+ g2 − 2.

Hence the dimension of the general fiber of Ik → H̃g is equal to(
g + 1

2

)
−
(
g + 1− k

2

)
− 3g + 2.

which is the same as q(g, g − 1, 2g − 2, k). �

Lemma 2.2. — For any k > 3 and any rational normal curve Γ ⊆ Pr,
the variety Qk(Γ,Pr) has the expected dimension q(0, r, r, k).

Proof. — First we confirm the case k = 3, that is, we show that for a
rational normal curve Γ ⊆ Pr, we have that

dimQ3(Γ,Pr) = q(0, r, r, 3).

As explained in the previous lemma, the elements of Q3(Γ,Pr) are in one
to one correspondence with the data (A,F ) such that

2A+ F = OΓ(1),

where A is a pencil and F is a divisor supported on the singular locus of
the associated quadric. If we let x = deg(F ) then the parameter count for
the pairs (A,F ) yields

dim Gr
(

2, r − x2 + 1
)

+ x = r − 2.

Since q(0, r, r, 3) = r− 2, that finishes the proof of the case k = 3. The rest
of the proof is analogous to the proof of Lemma 2.1, we leave these details
to the reader. �

In the next proposition we prove the inductive step, which takes care of
the cases g − d + r = 0, 1. In the proof we will need the following lemma
from [4]:

Lemma 2.3. — Let ρ(g, r, d) > 0 and 0 6 g 6 d − r +
⌊
d−r−2
r−2

⌋
. If

C ∈ Hd,g,r and ` is a 2-secant line of C then C ∪ ` ∈ Hd+1,g+1,r.

Proof. — See Lemma 2.2 in [4]. �

Proposition 2.4. — Theorem 1.1 holds whenever ρ(g, r, d) > 0 and
g − d+ r = 0 or 1.

TOME 69 (2019), FASCICULE 4
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Proof. — We fix r > 3 and apply induction on g. As we already pointed
out, the base step of the induction was confirmed in Lemma 2.1 and
Lemma 2.2. For the inductive step, we let [C ⊆ Pr] ∈ Hd,g,r such that

dimQk(C,Pr) = q(g, r, d, k)

for all k > 3. Let ` be a general 2-secant line of C and consider the nodal
curve X := C ∪ `. By Lemma 2.3, we have that [X ⊆ Pr] ∈ Hd+1,g+1,r.
Since

q(g + 1, r, d+ 1, k) = q(g, r, d, k)− 1,
all we need to show is that to contain the secant line ` imposes a nontrivial
condition on the variety Qk(C,Pr). This follows from the fact that the
secant variety of a non-degenerate curve does not lie in any quadric (see
Corollary 2.3 in [6]). �

The only remaining case is the case of incomplete embeddings (i.e. g −
d+ r < 0), which will be treated in the next proposition. We first make a
simple observation, which we will use in the proof of the proposition.

Lemma 2.5. — Let C be a smooth curve of genus g and ` = (L, V ) a
very ample grd on the curve. LetW∨ be the kernel of the mapH0(L)∨ → V ∨

induced by the inclusion V ⊆ H0(L). Consider the following commutative
diagram

C
|L| //

`
&&

P(H0(L)∨)

π

��
P(V ∨)

where π is the projection with center P(W∨). We have that

dimQk(C, `) = dimQk(C,L)[P(W∨)],

where

Qk(C,L)[P(W∨)] := {Q ∈ Qk(C,L) | P(W∨) ⊆ Sing(Q)} .

Proof. — There is an evident map Qk(C,L)[P(W∨)]→ Qk(C, `) defined
by projecting quadrics by π. The inverse of this map is given by assigning
Q to the cone over Q with vertex P(W∨). �

Proposition 2.6. — Theorem 1.1 holds in the range g − d+ r < 0.

Proof. — We fix integers g, r, d, k such that g − d + r < 0 and we let C
be a general curve of genus g. The space of grd’s on C is defined as follows

Grd(C) :=
{

(L, V )
∣∣∣ L ∈ Picd(C), V ⊆ H0(L),dimV = r + 1

}
.

ANNALES DE L’INSTITUT FOURIER



SINGULAR QUADRICS 1887

In the range g − d + r < 0, the variety Grd(C) is irreducible and sits over
the Picard variety Picd(C) as a Grassmann bundle. Therefore a general grd
on C is simply a general point on the Grassmannian

Gr
(
h0(L)− r − 1, h0(L)

)
for a general line bundle L ∈ Picd(C).
We fix a general line bundle L ∈ Picd(C). By Proposition 2.4 we have

that
dimQk(C,L) = q(g, d− g, d, k).

We consider the incidence correspondence

I := {(Q,Λ) | Λ ⊆ SingQ} ⊆ Qk(C,L)×Gr(d− g − r, d− g + 1),

and the projection maps

I
π1

{{
π2

##
Qk(C,L) Gr(d− g − r, d− g + 1).

The singular locus of a rank k quadric has dimension d−g−k and therefore
the relative dimension of π1 over the set of quadrics of rank exactly k is
equal to the dimension of the Grassmannian Gr(d − g − r, d − g − k + 1).
Therefore, we have that

dim I > q(g, d− g, d, k) + (d− g − r)(r + 1− k).

In fact this is an equality: If Z is a component of I with dimension strictly
greater than that number, we must have that

π1(Z) ⊆ Qk−1(C,L).

Let k′ be the smallest integer such that π1(Z) ⊆ Qk′(C,L). Then a general
element of π1(Z) is a quadric of rank k′ and by the same dimension count
we get that

dimZ = q(g, d− g, d, k′) + (d− g − r)(r + 1− k′),

which is strictly smaller than q(g, d−g, d, k)+(d−g−r)(r+1−k). Therefore
we conclude that

dim I = q(g, d− g, d, k) + (d− g − r)(r + 1− k).

Now there are two cases to consider. First, if q(g, r, d, k) > 0 then the map
π2 is surjective, for if Λ ∈ Gr(d− g − r, d− g + 1) then

π−1
2 (Λ) = Qk(C,L)[Λ],

TOME 69 (2019), FASCICULE 4
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and by Lemma 2.5 we have that

dimQk(C,L)[Λ] = dimQk(C,Pr) > q(g, r, d, k) > 0.

Therefore, the dimension of the fiber of π2 at a general point is equal to

q(g, d− g, d, k) + (d− g − r)(r + 1− k)− dim Gr(d− g − r, d− g + 1)
= q(g, r, d, k).

Hence we conclude that dimQk(C,Pr) = q(g, r, d, k).
On the other hand, if q(g, r, d, k) < 0 then π2 is not surjective and thus

for a general element Λ ∈ Gr(d− g − r, d− g + 1), the variety Qk(C,L)[Λ]
and hence Qk(C,Pr) is empty. �

3. Computation of the class Quad
k
g,n

In the computation of the classQuad
k

g,n, we make essential use of a recent
result by Farkas and Rimányi:

Theorem 3.1 ([8]). — Let X be an algebraic variety and suppose that
there is a morphism of vector bundles

φ : Sym2 E → F

on X, where E and F are vector bundles of ranks e and f , respectively. For
k 6 e, we define the subvariety

Σke,f (φ) := {x ∈ X | ∃ 0 6= q ∈ Ker(φ(x)) s.t. rk(q) 6 k} .

If f =
(
e+1

2
)
−
(
e−k+1

2
)
then Σke,f (φ) is expected to be of codimension one

in X and its virtual class is given by the formula

[Σke,f (φ)] = Ake ·
(
c1(F)− 2f

e
· c1(E)

)
,

where

Ake :=
e−k−1∏
t=0

(
e+i

e−k−t
)(2t+1

t

) .
To define the locus Quadkg,n, we fix integers g, n, k such that

q(g, g − n− 1, 2g − 2− n, k) = −1.

We let
π :Mg,n+1 →Mg,n

ANNALES DE L’INSTITUT FOURIER
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be the map that forgets the last marked point and L be the cotangent line
bundle onMg,n+1. We define the sheaves

E := π∗L

− n∑
j=1

δ0:{j,n+1}

 ,

and

F := π∗L
⊗2

−2 ·
n∑
j=1

δ0:{j,n+1}

 ,

and consider the natural multiplication map

φ : Sym2 E → F .

We define the locus Quadkg,n as

Quadkg,n := Σke,f (φ) ∩Mg,n,

where e = g−n and f = 3g−3−2n. Using Theorem 3.1 and Grothendieck–
Riemann–Roch formula we obtain the following result:

Theorem 3.2. — The coefficients of the class Quad
k

g,n satisfy the fol-
lowing relations:

αkg,n =
g−n−k−1∏

t=0

(
g−n+t

g−n−k−t
)(2t+1

t

) , a = 7g − 9n+ 6
g − n

, c = g + n− 6
g − n

, birr = 1,

and bi:s > 1 for 0 6 i 6 g and 0 6 s 6 n.

Proof. — The proof follows the same line of arguments as in the proof
of Theorem 2.1 in [14]. First note that the evaluation map

π∗L
ev−→ π∗

(
L |∑n

j=1
δ0:{j,n+1}

)
fails to be surjective over the boundary divisor ∆i:S when i < s or g − i <
n− s, where s = |S|. Therefore we break our analysis into two parts. First,
we let M̃g,n be the partial compactification defined as the union ofMg,n

with the boundary divisors ∆i:S , such that s 6 i and n− s 6 g− i. We will
deal with the case where i < s or g − i < n− s later.
The sheaf E sits in the following sequence of sheaves over M̃g,n:

0→ E → π∗L
ev−→ π∗

(
L |∑n

j=1
δ0:{j,n+1}

)
→ 0.

TOME 69 (2019), FASCICULE 4
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Since we are in the range s 6 i and n− s 6 g− i, it easily follows that the
evaluation map ev is surjective in codimension 2. Therefore we obtain that

c1(E) = λ−
n∑
j=1

ψj .

Next we use Grothendieck–Riemann–Roch formula to compute c1(F). We
let

M = L ⊗2

−2 ·
n∑
j=1

δ0:{j,n+1}


and write

ch (π!M ) = π∗ (ch(M ) · Td(π)) .

Collecting degree 1 terms on both sides, we obtain that

c1(F) = π∗

[(
1 + c1(M ) + c1(M )2

2

)
·
(

1− c1(L )
2 + c1(L )2 + Σ

12

)]
,

where Σ denotes the locus of pointed singular curves in Mg,n+1 where
the point with label n+ 1 hits the singular locus of the curve. Using basic
intersection theory and well known formulas relating push forwards of codi-
mension 2 classes in Mg,n+1 with divisor classes in Mg,n (see Section 17
in [2]) we obtain that

c1(F) = 13 · λ− 5 ·
n∑
j=1

ψj − δ,

where δ denotes the class of the whole boundary. Using Theorem 3.1 we
obtain the following formula for the class of Σke,f (φ):

(3.1) [Σke,f (φ)] = Akg−n ·

7g − 9n+ 6
g − n

· λ+ g + n− 6
g − n

·
n∑
j=1

ψj − δ

 .

This way we obtained the coefficients a and c. To conclude that birr = 1,
one also needs to show that ∆irr 6⊂ Σke,f (φ). The arguments in Lemma 2.1
and Proposition 2.4 can be repeated verbatim for the canonical image of
an irreducible nodal curve to show that Theorem 1.1 holds true also for
general elements of ∆irr. We skip these details.

From the expression (3.1), we can read off the bound bi:s > 1 whenever
we have that s 6 i and n−s 6 g− i. To deal with the boundary coefficients
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bi:s when i < s or g − i < n− s, we introduce the twist

L ′ := L


∑

06i6g
i<s
|S|=s

(i− s− 1) · δi:S∪{n+1}

 ,

and define the sheaves

E ′ := π∗L
′

− n∑
j=1

δ0:{j,n+1}

 ,

and

F ′ := π∗L
′⊗2

−2 ·
n∑
j=1

δ0:{j,n+1}

 .

It can easily be checked that the ranks of E ′ and F ′ stay constant away
from loci of codimension 2 and thus we have a morphism of vector bundles
in codimension 2

(3.2) φ′ : Sym2 E ′ → F ′

extending φ. Between the classes [Σke,f (φ′)] and Quad
k

g,n, we have the rela-
tion

(3.3) [Σke,f (φ′)] = Quad
k

g,n +
∑

di:s · δi:S ,

where di:s > 0. Letting b̃i:s denote the coefficient of δi:S in the class
[Σke,f (φ′)], we obtain the equality b̃i:s = bi:s − di:s.
We computed the intersection of the Chern classes of E ′ and F ′ with

simple test curves in Lemma 2.2 in [14]. Using that and Theorem 3.1, we
compute

b̃i:s = 1
g − n

(
− i2(g − 2n+ 3) + i(2g − 2sn+ 6s− 3n+ 3)

+ s((g − 3)s+ n− 3)
)
,

for all i, s such that i < s. It is easy to see that this quantity is always
> 1. �

We believe that the coefficients d0:s in equation (3.3) are equal to zero
and therefore b0:s = b̃0:s, but we could prove this only for k = 4:
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Theorem 3.3. — For k = 4 and S ⊆ {1, . . . , n} the general element of
∆0:S does not lie in Σke,f (φ′) and we have that

b0:s = s(gs− 3s+ n− 3)
g − n

·

Proof. — Let [C, pi1 , . . . , pik ] and [R, pj1 , . . . , pj`
] be general pointed

curves inMg,Sc and inM0,S , respectively. We choose general points p0 ∈ C
and q0 ∈ R and identify these to obtain the pointed curve [X, p1, . . . pn] ∈
∆0:S . The fiber of the vector bundle map (3.2) over this moduli point is
equal to

Sym2H0

(
KC −

∑
i∈Sc

pi − s · p0

)
→ H0

(
K⊗2
C − 2 ·

∑
i∈Sc

pi − 2s · p0

)
.

Therefore, we need to show that there are no rank 4 quadrics containing the
image of C under the map given by the linear series |KC−

∑
i∈Sc pi−s ·p0|.

It is clearly sufficient to specialize to the case where pi = p0 for all i ∈ Sc
and check this claim for the linear series |KC − n · p0|.
First note that for k = 4 the numerical condition q(g, g − n − 1, 2g −

2 − n, k) = −1 implies that g = 2n + 3. Let A be a g1
a on the curve C

such that the pencil pair (A,KC − A − n · p0) corresponds to a rank 4
quadric containing C. By Brill–Noether theory, we have that a > n + 3.
Since |KC −A| is a gg−a2g−2−a, the condition that

h0(KC −A− n · p0) > 2

imposes non trivial conditions on the ramification type of the linear series
|KC−A| at the point p0. Precisely, we have the following inequality for the
ramification sequence of |KC −A|:

(3.4) αKC−A(p0) > (0, . . . , 0, a− n− 2, a− n− 2).

We know from Brill–Noether theory that a grd subject to a ramification
condition

αg
r
d (p) > (α0, α1, . . . , αr)

at a general point p ∈ C has non-negative adjusted Brill–Noether number,
which is defined as

ρ(g, r, d;α) = g − (r + 1)(g − d+ r)−
r∑
i=0

αi

(See Proposition 1.2 in [7] and the discussion preceding it). Using the in-
equality (3.4), we estimate the adjusted Brill–Noether number of |KC −A|
at p0 as

ρ(g, g − a, 2g − 2− a;αKC−A(p0)) 6 −1.
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Therefore for a general pointed curve [C, p0] ∈ Mg,1 such a linear series
does not exist, which in turn implies that C is not contained in a rank 4
quadric when mapped to the projective space via the linear series |KC −
n · p0|. �

In the proof of Theorem 1.3 we use the following result from [8]:

Theorem 3.4 ([8]). — Let X be an algebraic variety and

φ : Sym2(E)→ F

be a morphism of vector bundles over X where rk(E) = e and rk(F) =(
e+1

2
)
− 2. The class of the virtual divisor

Dp(φ) := {x ∈ X |Ker(φ(x)) is a degenerate pencil}

is given by the formula

[Dp(φ)] = (e− 1) ·
(
e · c1(F)− (e2 + e− 4) · c1(E)

)
∈ H2(X,Q).

Proof of Theorem 1.3. — We first show that

D15,8 6=M15,8.

To do this it suffices to exhibit an element [C, p1, . . . , p8] ∈ M15,8 such
that the image of C under the map induced by |KC − p1 − · · · − p8| lies
in a non-degenerate pencil of quadrics. In other words, it is sufficient to
show that there exists a smooth curve C ⊆ P6 of genus 15 and degree 20
such that the pencil I2(C,OC(2)) is non-degenerate. To this end, we pick
15 general points on P2 and consider the blown up surface X := Bl15(P2).
Using Macaulay2 [10] (version 1.6), we show that the linear system

H = 7h− 2(E1 + · · ·+ E7)− E8 − · · · − E15

embeds X to P6, where h is the class of a line in P2 and Ei is the except-
ional divisor corresponding to the ith point. We also check that
dim I2(X,OX(2)) = 2 and that the pencil is non-degenerate. Next, we
let C to be a general element of the linear system

|10h− 3(E1 + E2 + E3)− 2(E4 + · · ·+ E15)| .

Again using Macaulay2 we check that this linear system is base point free,
hence by Bertini’s theorem we obtain that C is smooth. It is easy to see
that the genus of C is 15 and C.H = 20. We also check that

H0(OX(2H − C)) = 0,

which implies that the restriction map

ρ : H0(OX(2))→ H0(OC(2))
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is injective. Therefore the map

H0(OP6(2))→ H0(OC(2))

factors through ρ and it follows that

I2(X,OX(2)) = I2(C,OC(2)).

To compute the class of D15,8, we let

E := π∗L

− 8∑
j=1

δ0:{j,9}

 ,

and

F := π∗L
⊗2

−2 ·
8∑
j=1

δ0:{j,9}

 ,

and consider the morphism of vector bundles

φ : Sym2 E → F

over the partial compactification M̃g,n (Here we use the notation in the
proof of Theorem 3.2). Using Theorem 3.4, we compute that

[Dp(φ)] = 6 ·

39 · λ+ 17 ·
8∑
j=1

ψj − 7 · δ

 .

It follows that the boundary coefficients birr and bi:s of D15,8 are at least
7 when s 6 i and n − s 6 g − i. To obtain a lower bound for bi:s in the
remaining cases we use the extension (3.2) of the vector bundle map φ.
Analogously to the proof of Theorem 3.2, we write

[Dp(φ′)] = 6 ·

39 · λ+ 17 ·
8∑
j=1

ψj − 7 · δirr −
∑
i,s>0

b̃i:s ·
∑
|S|=s

δi:S

 ,

and compute that

b̃i:s = −2i2 + i(9− 10s) + s(12s+ 5)

for all i, s such that i < s. Clearly, bi:s > b̃i:s > 7. �

We conclude the paper with the proof of Corollary 1.4.
Proof of Corollary 1.4. — We first recall that the canonical class ofMg,n

is well known to be

KMg,n
= 13 ·λ−2 ·δirr+

n∑
j=1

ψj−2 ·
∑
S∈P
|S|>2

δ0:S−3 ·
∑
S∈P

δ1:S−2 ·
bg/2c∑
i=2

∑
S∈P

δi:S ,
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where P denotes the power set of {1, . . . , n}. We consider the map

πj :M15,9 →M15,8

that forgets the point labeled by j. Pulling back the divisor D15,8 via πj
for every j ∈ {1, . . . , 9} and taking their average, we obtain the effective
class

Z15,9 = 351 · λ+ 136 ·
9∑
j=1

ψj − birr · δirr −
∑
i,s>0

bi:s ·
∑
|S|=s

δi:S ,

where birr, bi:s > 63 for all i, s > 0.
On M15,9 we also have the pullback of the Brill–Noether divisor from

M15, whose class is given by the following formula:

BN15 = 54 · λ− 8 · δirr − . . .

Using these classes we can express KM15,9
as follows:

KM15,9
= 25

297 ·
9∑
j=1

ψj + 2
297 · Z15,9 + 13

66 ·BN15 + E,

where E is an effective divisor supported on the boundary ofM15,9. Since
the class

∑9
j=1 ψj is big, the result follows. �

BIBLIOGRAPHY

[1] A. Andreotti & A. L. Mayer, “On period relations for abelian integrals on alge-
braic curves”, Ann. Sc. Norm. Super. Pisa, Cl. Sci. 21 (1967), p. 189-238.

[2] E. Arbarello, M. Cornalba & P. A. Griffiths, Geometry of algebraic curves,
Volume II., Grundlehren der Mathematischen Wissenschaften, vol. 268, Springer,
2011.

[3] E. Arbarello, M. Cornalba, P. A. Griffiths & J. D. Harris, Geometry of
algebraic curves, Volume I., Grundlehren der Mathematischen Wissenschaften, vol.
267, Springer, 1985.

[4] E. Ballico & P. Ellia, “On the existence of curves with maximal rank in Pn”, J.
Reine Angew. Math. 397 (1989), p. 1-22.

[5] E. Ballico & C. Fontanari, “Normally generated line bundles on general curves.
II”, J. Pure Appl. Algebra 214 (2010), no. 8, p. 1450-1455.

[6] M. L. Catalano-Johnson, “The homogeneous ideals of higher secant varieties”, J.
Pure Appl. Algebra 158 (2001), no. 2-3, p. 123-129.

[7] D. Eisenbud & J. Harris, “The Kodaira dimension of the moduli space of curves
of genus > 23”, Invent. Math. 90 (1987), p. 359-387.

[8] G. Farkas & R. Rimanyi, “Quadric rank loci on moduli of curves and K3 surfaces”,
2017, https://arxiv.org/abs/1707.00756.

[9] D. Gieseker, “Stable curves and special divisors”, Invent. Math. 66 (1982), p. 251-
275.

TOME 69 (2019), FASCICULE 4

https://arxiv.org/abs/1707.00756


1896 İrfan KADIKÖYLÜ

[10] D. R. Grayson & M. E. Stillman, “Macaulay2, a software system for re-
search in algebraic geometry”, Available at https://faculty.math.illinois.edu/
Macaulay2/.

[11] J. Harris, Curves in projective space, Séminaire de Mathématiques Supérieures,
vol. 85, University of Montreal, 1982.

[12] J. Harris & L. W. Tu, “On symmetric and skew-symmetric determinantal vari-
eties”, Topology 23 (1984), p. 71-84.

[13] D. Jensen & S. Payne, “Tropical independence II: The maximal rank conjecture
for quadrics”, Algebra Number Theory 10 (2016), no. 8, p. 1601-1640.

[14] İ. Kadıköylü, “Maximal rank divisors on Mg,n”, https://arxiv.org/abs/1705.
04250, to appear in Ann. Sc. Norm. Super. Pisa, Cl. Sci.

[15] A. G. Zamora, “On the variety of quadrics of rank four containing a projective
curve”, Boll. Unione Mat. Ital. 2-B (1999), no. 2, p. 453-462.

Manuscrit reçu le 24 juillet 2017,
révisé le 21 mars 2018,
accepté le 13 juin 2018.

İrfan KADIKÖYLÜ
Humboldt-Universität zu Berlin
Institut für Mathematik
10099 Berlin (Germany)
irfankadikoylu@gmail.com

ANNALES DE L’INSTITUT FOURIER

https://faculty.math.illinois.edu/Macaulay2/
https://faculty.math.illinois.edu/Macaulay2/
https://arxiv.org/abs/1705.04250
https://arxiv.org/abs/1705.04250
mailto:irfankadikoylu@gmail.com

	1. Introduction
	Notation

	2. Proof of Theorem 1.1
	3. Computation of the class Quad k g,n
	Bibliography

