Waring’s problem for unipotent algebraic groups
Annales de l'Institut Fourier, Volume 69 (2019) no. 4, pp. 1857-1877.

In this paper, we formulate an analogue of Waring’s problem for an algebraic group G. At the field level we consider a morphism of varieties f:𝔸 1 G and ask whether every element of G(K) is the product of a bounded number of elements of f(𝔸 1 (K))=f(K). We give an affirmative answer when G is unipotent and K is a characteristic zero field which is not formally real.

The idea is the same at the integral level, except one must work with schemes, and the question is whether every element in a finite index subgroup of G(𝒪) can be written as a product of a bounded number of elements of f(𝒪). We prove this is the case when G is unipotent and 𝒪 is the ring of integers of a totally imaginary number field.

Dans cet article, nous formulons un analogue du problème de Waring pour un groupe algébrique G. Soit K un corps. Nous considérons un morphisme de variétés f:𝔸 1 G, défini sur K, et nous demandons si chaque élément de G(K) est le produit d’un nombre borné d’éléments de f(𝔸 1 (K))=f(K). Nous donnons une réponse affirmative quand G est unipotent et K est un corps de caractéristique 0 ce qui n’est pas formellement réel.

L’idée est la même au niveau intégral, sauf qu’il faut travailler avec des schémas, et la question est de savoir si chaque élément d’un sous-groupe d’indice fini de G(𝒪) peut être écrit comme un produit d’un nombre borné d’éléments de f(𝒪). Nous prouvons que c’est le cas lorsque G est unipotent et 𝒪 est l’anneau d’entiers d’un corps de nombres totalement imaginaire.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/aif.3283
Classification: 11P05, 20G15, 14L15
Keywords: Waring’s problem, easier Waring’s problem, unipotent algebraic groups
Mot clés : problème de Waring, problème facile de Waring, groupes algébriques unipotents

Larsen, Michael 1; Nguyen, Dong Quan Ngoc 2

1 Department of Mathematics Indiana University Bloomington, Indiana 47405 (USA)
2 Department of Applied and Computational Mathematics and Statistics University of Notre Dame Notre Dame, Indiana 46556 (USA)
License: CC-BY-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AIF_2019__69_4_1857_0,
     author = {Larsen, Michael and Nguyen, Dong Quan Ngoc},
     title = {Waring{\textquoteright}s problem for unipotent algebraic groups},
     journal = {Annales de l'Institut Fourier},
     pages = {1857--1877},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {69},
     number = {4},
     year = {2019},
     doi = {10.5802/aif.3283},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3283/}
}
TY  - JOUR
AU  - Larsen, Michael
AU  - Nguyen, Dong Quan Ngoc
TI  - Waring’s problem for unipotent algebraic groups
JO  - Annales de l'Institut Fourier
PY  - 2019
SP  - 1857
EP  - 1877
VL  - 69
IS  - 4
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3283/
DO  - 10.5802/aif.3283
LA  - en
ID  - AIF_2019__69_4_1857_0
ER  - 
%0 Journal Article
%A Larsen, Michael
%A Nguyen, Dong Quan Ngoc
%T Waring’s problem for unipotent algebraic groups
%J Annales de l'Institut Fourier
%D 2019
%P 1857-1877
%V 69
%N 4
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3283/
%R 10.5802/aif.3283
%G en
%F AIF_2019__69_4_1857_0
Larsen, Michael; Nguyen, Dong Quan Ngoc. Waring’s problem for unipotent algebraic groups. Annales de l'Institut Fourier, Volume 69 (2019) no. 4, pp. 1857-1877. doi : 10.5802/aif.3283. https://aif.centre-mersenne.org/articles/10.5802/aif.3283/

[1] Avni, Nir; Gelander, Tsachik; Kassabov, Martin; Shalev, Aner Word values in p-adic and adelic groups, Bull. Lond. Math. Soc., Volume 45 (2013) no. 6, pp. 1323-1330 | DOI | MR | Zbl

[2] Birch, Bryan J. Waring’s problem for 𝔭-adic number fields, Acta Arith., Volume 9 (1964), pp. 169-176 | DOI | MR | Zbl

[3] Car, Mireille Le problème de Waring pour les corps de fonctions, Journées Arithmétiques (Luminy, 1989) (Astérisque), Volume 198-200, Société Mathématique de France, 1991, pp. 77-82 | Zbl

[4] Chinburg, Ted Infinite easier Waring constants for commutative rings, Topology Appl., Volume 158 (2011) no. 14, pp. 1844-1847 | DOI | MR | Zbl

[5] Demazure, Michel; Gabriel, Pierre Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs, Masson; North-Holland, 1970, xxvi+700 pages (Avec un appendice Corps de classes local par Michiel Hazewinkel) | Zbl

[6] Ellison, William Waring’s problem for fields, Acta Arith., Volume 159 (2013) no. 4, pp. 315-330 | DOI | MR | Zbl

[7] Gallardo, Luis H.; Vaserstein, Leonid N. The strict Waring problem for polynomial rings, J. Number Theory, Volume 128 (2008) no. 12, pp. 2963-2972 | DOI | MR | Zbl

[8] Grunewald, Fritz J.; Schwermer, Joachim Free nonabelian quotients of SL 2 over orders of imaginary quadratic numberfields, J. Algebra, Volume 69 (1981) no. 2, pp. 298-304 | MR | Zbl

[9] Guralnick, Robert M.; Tiep, Pham Huu Effective results on the Waring problem for finite simple groups, Am. J. Math., Volume 137 (2015) no. 5, pp. 1401-1430 | DOI | MR | Zbl

[10] Im, Bo-Hae; Larsen, Michael Waring’s problems for rational functions in one variable (https://arxiv.org/abs/1801.06770) | Zbl

[11] Kamke, Erich Verallgemeinerungen des Waring–Hilbertschen Satzes, Math. Ann., Volume 83 (1921) no. 1-2, pp. 85-112 | DOI | MR | Zbl

[12] Larsen, Michael; Shalev, Aner; Tiep, Pham Huu The Waring problem for finite simple groups, Ann. Math., Volume 174 (2011) no. 3, pp. 1885-1950 | DOI | MR | Zbl

[13] Liu, Yu-Ru; Wooley, Trevor D. Waring’s problem in function fields, J. Reine Angew. Math., Volume 638 (2010), pp. 1-67 | DOI | MR | Zbl

[14] Rosenlicht, Maxwell Some basic theorems on algebraic groups, Am. J. Math., Volume 78 (1956), pp. 401-443 | DOI | MR | Zbl

[15] Serre, Jean-Pierre Cohomologie galoisienne, Lecture Notes in Mathematics, 5, Springer, 1965, v+212 pages (With a contribution by Jean-Louis Verdier) | MR | Zbl

[16] Shalev, Aner Word maps, conjugacy classes, and a noncommutative Waring-type theorem, Ann. Math., Volume 170 (2009) no. 3, pp. 1383-1416 | MR | Zbl

[17] Siegel, Carl Ludwig Generalization of Waring’s problem to algebraic number fields, Am. J. Math., Volume 66 (1944), pp. 122-136 | DOI | MR | Zbl

[18] Siegel, Carl Ludwig Sums of mth powers of algebraic integers, Ann. Math., Volume 46 (1945), pp. 313-339 | DOI | MR | Zbl

[19] Suzuki, Michio Group theory. II, Grundlehren der Mathematischen Wissenschaften, 248, Springer, 1986, x+621 pages (Translated from the Japanese) | MR | Zbl

[20] Tavgenʼ, Oleg I. Bounded generation of normal and twisted Chevalley groups over the rings of S-integers, Proceedings of the International Conference on Algebra, Part 1 (Novosibirsk, 1989) (Contemporary Mathematics), Volume 131 (1992), pp. 409-421 | MR | Zbl

[21] Voloch, José Felipe On the p-adic Waring’s problem, Acta Arith., Volume 90 (1999) no. 1, pp. 91-95 | DOI | MR | Zbl

[22] Wooley, Trevor D. On simultaneous additive equations. III, Mathematika, Volume 37 (1990) no. 1, pp. 85-96 | MR | Zbl

[23] Wooley, Trevor D. On simultaneous additive equations. I, Proc. Lond. Math. Soc., Volume 63 (1991) no. 1, pp. 1-34 | DOI | MR | Zbl

[24] Wooley, Trevor D. On simultaneous additive equations. II, J. Reine Angew. Math., Volume 419 (1991), pp. 141-198 | MR | Zbl

[25] Wright, E. Maitland An easier Waring’s problem, J. Lond. Math. Soc., Volume 9 (1934) no. 4, pp. 267-272 | DOI | MR | Zbl

Cited by Sources: