Nous étudions la variété de quadriques de rang au maximum en contenant une courbe projective générale de genre et de degré et nous montrons qu’elle a la dimension attendue dans le cas . En considérant le lieu où la dimension est différente, nous construisons des nouvelles classes de diviseurs dans . Nous utilisons une de ces classes pour montrer que est de type général.
We study the variety of quadrics of rank at most in , containing a general projective curve of genus and degree and show that it has the expected dimension in the range . By considering the loci where this expectation is not true, we construct new divisor classes in . We use one of these classes to show that is of general type.
Révisé le :
Accepté le :
Publié le :
Keywords: moduli space, singular quadrics
Mot clés : espace de modules, quadriques singulières
Kadiköylü, İrfan 1
@article{AIF_2019__69_4_1879_0, author = {Kadik\"oyl\"u, \.Irfan}, title = {Variety of singular quadrics containing a projective curve}, journal = {Annales de l'Institut Fourier}, pages = {1879--1896}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {69}, number = {4}, year = {2019}, doi = {10.5802/aif.3284}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3284/} }
TY - JOUR AU - Kadiköylü, İrfan TI - Variety of singular quadrics containing a projective curve JO - Annales de l'Institut Fourier PY - 2019 SP - 1879 EP - 1896 VL - 69 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3284/ DO - 10.5802/aif.3284 LA - en ID - AIF_2019__69_4_1879_0 ER -
%0 Journal Article %A Kadiköylü, İrfan %T Variety of singular quadrics containing a projective curve %J Annales de l'Institut Fourier %D 2019 %P 1879-1896 %V 69 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3284/ %R 10.5802/aif.3284 %G en %F AIF_2019__69_4_1879_0
Kadiköylü, İrfan. Variety of singular quadrics containing a projective curve. Annales de l'Institut Fourier, Tome 69 (2019) no. 4, pp. 1879-1896. doi : 10.5802/aif.3284. https://aif.centre-mersenne.org/articles/10.5802/aif.3284/
[1] On period relations for abelian integrals on algebraic curves, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 21 (1967), pp. 189-238 | MR | Zbl
[2] Geometry of algebraic curves, Volume II., Grundlehren der Mathematischen Wissenschaften, 268, Springer, 2011 | MR | Zbl
[3] Geometry of algebraic curves, Volume I., Grundlehren der Mathematischen Wissenschaften, 267, Springer, 1985 | Zbl
[4] On the existence of curves with maximal rank in , J. Reine Angew. Math., Volume 397 (1989), pp. 1-22 | MR | Zbl
[5] Normally generated line bundles on general curves. II, J. Pure Appl. Algebra, Volume 214 (2010) no. 8, pp. 1450-1455 | DOI | MR | Zbl
[6] The homogeneous ideals of higher secant varieties, J. Pure Appl. Algebra, Volume 158 (2001) no. 2-3, pp. 123-129 | DOI | MR | Zbl
[7] The Kodaira dimension of the moduli space of curves of genus , Invent. Math., Volume 90 (1987), pp. 359-387 | DOI | MR | Zbl
[8] Quadric rank loci on moduli of curves and K3 surfaces, 2017 (https://arxiv.org/abs/1707.00756)
[9] Stable curves and special divisors, Invent. Math., Volume 66 (1982), pp. 251-275 | DOI | MR | Zbl
[10] Macaulay2, a software system for research in algebraic geometry (Available at https://faculty.math.illinois.edu/Macaulay2/)
[11] Curves in projective space, Séminaire de Mathématiques Supérieures, 85, University of Montreal, 1982 | MR | Zbl
[12] On symmetric and skew-symmetric determinantal varieties, Topology, Volume 23 (1984), pp. 71-84 | DOI | MR | Zbl
[13] Tropical independence II: The maximal rank conjecture for quadrics, Algebra Number Theory, Volume 10 (2016) no. 8, pp. 1601-1640 | DOI | MR | Zbl
[14] Maximal rank divisors on (https://arxiv.org/abs/1705.04250, to appear in Ann. Sc. Norm. Super. Pisa, Cl. Sci.)
[15] On the variety of quadrics of rank four containing a projective curve, Boll. Unione Mat. Ital., Volume 2-B (1999) no. 2, pp. 453-462 | MR | Zbl
Cité par Sources :