Variety of singular quadrics containing a projective curve
[La variété de quadriques singulières contenant une courbe projective]
Annales de l'Institut Fourier, Tome 69 (2019) no. 4, pp. 1879-1896.

Nous étudions la variété de quadriques de rang au maximum k en r contenant une courbe projective générale de genre g et de degré d et nous montrons qu’elle a la dimension attendue dans le cas g-d+r1. En considérant le lieu où la dimension est différente, nous construisons des nouvelles classes de diviseurs dans ¯ g,n . Nous utilisons une de ces classes pour montrer que ¯ 15,9 est de type général.

We study the variety of quadrics of rank at most k in r , containing a general projective curve of genus g and degree d and show that it has the expected dimension in the range g-d+r1. By considering the loci where this expectation is not true, we construct new divisor classes in ¯ g,n . We use one of these classes to show that ¯ 15,9 is of general type.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3284
Classification : 14H10, 14H51
Keywords: moduli space, singular quadrics
Mot clés : espace de modules, quadriques singulières

Kadiköylü, İrfan 1

1 Humboldt-Universität zu Berlin Institut für Mathematik 10099 Berlin (Germany)
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AIF_2019__69_4_1879_0,
     author = {Kadik\"oyl\"u, \.Irfan},
     title = {Variety of singular quadrics containing a projective curve},
     journal = {Annales de l'Institut Fourier},
     pages = {1879--1896},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {69},
     number = {4},
     year = {2019},
     doi = {10.5802/aif.3284},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3284/}
}
TY  - JOUR
AU  - Kadiköylü, İrfan
TI  - Variety of singular quadrics containing a projective curve
JO  - Annales de l'Institut Fourier
PY  - 2019
SP  - 1879
EP  - 1896
VL  - 69
IS  - 4
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3284/
DO  - 10.5802/aif.3284
LA  - en
ID  - AIF_2019__69_4_1879_0
ER  - 
%0 Journal Article
%A Kadiköylü, İrfan
%T Variety of singular quadrics containing a projective curve
%J Annales de l'Institut Fourier
%D 2019
%P 1879-1896
%V 69
%N 4
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3284/
%R 10.5802/aif.3284
%G en
%F AIF_2019__69_4_1879_0
Kadiköylü, İrfan. Variety of singular quadrics containing a projective curve. Annales de l'Institut Fourier, Tome 69 (2019) no. 4, pp. 1879-1896. doi : 10.5802/aif.3284. https://aif.centre-mersenne.org/articles/10.5802/aif.3284/

[1] Andreotti, Aldo; Mayer, Alan L. On period relations for abelian integrals on algebraic curves, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 21 (1967), pp. 189-238 | MR | Zbl

[2] Arbarello, Enrico; Cornalba, Maurizio; Griffiths, Phillip A. Geometry of algebraic curves, Volume II., Grundlehren der Mathematischen Wissenschaften, 268, Springer, 2011 | MR | Zbl

[3] Arbarello, Enrico; Cornalba, Maurizio; Griffiths, Phillip A.; Harris, Joseph D. Geometry of algebraic curves, Volume I., Grundlehren der Mathematischen Wissenschaften, 267, Springer, 1985 | Zbl

[4] Ballico, Edoardo; Ellia, Philippe On the existence of curves with maximal rank in n , J. Reine Angew. Math., Volume 397 (1989), pp. 1-22 | MR | Zbl

[5] Ballico, Edoardo; Fontanari, Claudio Normally generated line bundles on general curves. II, J. Pure Appl. Algebra, Volume 214 (2010) no. 8, pp. 1450-1455 | DOI | MR | Zbl

[6] Catalano-Johnson, Michael L. The homogeneous ideals of higher secant varieties, J. Pure Appl. Algebra, Volume 158 (2001) no. 2-3, pp. 123-129 | DOI | MR | Zbl

[7] Eisenbud, David; Harris, Joe The Kodaira dimension of the moduli space of curves of genus 23, Invent. Math., Volume 90 (1987), pp. 359-387 | DOI | MR | Zbl

[8] Farkas, Gavril; Rimanyi, Richard Quadric rank loci on moduli of curves and K3 surfaces, 2017 (https://arxiv.org/abs/1707.00756)

[9] Gieseker, David Stable curves and special divisors, Invent. Math., Volume 66 (1982), pp. 251-275 | DOI | MR | Zbl

[10] Grayson, Daniel R.; Stillman, Michael E. Macaulay2, a software system for research in algebraic geometry (Available at https://faculty.math.illinois.edu/Macaulay2/)

[11] Harris, Joe Curves in projective space, Séminaire de Mathématiques Supérieures, 85, University of Montreal, 1982 | MR | Zbl

[12] Harris, Joe; Tu, Loring W. On symmetric and skew-symmetric determinantal varieties, Topology, Volume 23 (1984), pp. 71-84 | DOI | MR | Zbl

[13] Jensen, David; Payne, Sam Tropical independence II: The maximal rank conjecture for quadrics, Algebra Number Theory, Volume 10 (2016) no. 8, pp. 1601-1640 | DOI | MR | Zbl

[14] Kadıköylü, İrfan Maximal rank divisors on M ¯ g,n (https://arxiv.org/abs/1705.04250, to appear in Ann. Sc. Norm. Super. Pisa, Cl. Sci.)

[15] Zamora, Alexis G. On the variety of quadrics of rank four containing a projective curve, Boll. Unione Mat. Ital., Volume 2-B (1999) no. 2, pp. 453-462 | MR | Zbl

Cité par Sources :