In this paper Bessel potentials on -Riemannian manifolds (open or bordered) are studied. Let be an -dimensional manifold, and a submanifold of of dimension . Sufficient conditions are given for: 1) the restriction to of any potential of order on to be a potential of order on ; 2) any potential of order on to be extendable to a potential of order on . It is also proved that for a bordered manifold the restriction to its interior is an isometric isomorphism between the spaces of potentials of order on and respectively.
On étudie ici les potentiels besseliens sur des variétés riemanniennes de classe bordées ou ouvertes. Soient : une variété -dimensionnelle et une sous-variété de de dimension . On donne des conditions suffisantes pour que : 1) la restriction à d’un potentiel sur soit un potentiel d’ordre sur ; 2) un potentiel d’ordre sur admette une extension à un potentiel d’ordre sur . On prouve aussi que pour une variété bordée la restriction à son intérieur est un isomorphisme isométrique entre l’espace des potentiels d’ordre sur , et l’espace des potentiels d’ordre sur .
@article{AIF_1969__19_2_279_0, author = {Adams, Robert and Aronszajn, Nachman and Hanna, M. S.}, title = {Theory of {Bessel} potentials. {III:} {Potentials} on regular manifolds}, journal = {Annales de l'Institut Fourier}, pages = {279--338}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {19}, number = {2}, year = {1969}, doi = {10.5802/aif.328}, zbl = {0176.09902}, mrnumber = {54 #915}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.328/} }
TY - JOUR AU - Adams, Robert AU - Aronszajn, Nachman AU - Hanna, M. S. TI - Theory of Bessel potentials. III: Potentials on regular manifolds JO - Annales de l'Institut Fourier PY - 1969 SP - 279 EP - 338 VL - 19 IS - 2 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.328/ DO - 10.5802/aif.328 LA - en ID - AIF_1969__19_2_279_0 ER -
%0 Journal Article %A Adams, Robert %A Aronszajn, Nachman %A Hanna, M. S. %T Theory of Bessel potentials. III: Potentials on regular manifolds %J Annales de l'Institut Fourier %D 1969 %P 279-338 %V 19 %N 2 %I Institut Fourier %C Grenoble %U https://aif.centre-mersenne.org/articles/10.5802/aif.328/ %R 10.5802/aif.328 %G en %F AIF_1969__19_2_279_0
Adams, Robert; Aronszajn, Nachman; Hanna, M. S. Theory of Bessel potentials. III: Potentials on regular manifolds. Annales de l'Institut Fourier, Volume 19 (1969) no. 2, pp. 279-338. doi : 10.5802/aif.328. https://aif.centre-mersenne.org/articles/10.5802/aif.328/
[1] Theory of Bessel Potentials, Part II, Ann. Inst. Fourier, Vol. 17, Fasc. 2 (1967), 1-135. | Numdam | MR | Zbl
, and ,[2] Associated spaces, interpolation theorems and the regularity of solutions of differential problems, Proc. of Symposia in Pure Mathematics, Vol. IV, (1961), AMS. | Zbl
,[3] Interpolation spaces and interpolation methods, Ann. Mat. Pura Appl. Ser. IV, Vol. 68 (1965), 51-118. | Zbl
and ,[4] Theory of Bessel Potentials, Part I, Ann. Inst. Fourier, Vol. 11 (1961), 385-475. | Numdam | MR | Zbl
and ,[5] Intermediate spaces and interpolation, Studia Math. (Ser. Specjalna) Zeszyt 1 (1963), 31-34. | Zbl
,[6] Linear Operators, Vol. I, Interscience, New York, (1958). | MR | Zbl
and ,[7] Spektraltheorie halbbeschränkter Operatoren und Anwendung auf die Spektralzerlegung von Differentialoperatoren, Math. Ann. Vol. 109 (1934), 465-487, 685-713. Errata : Ibid. Vol. 110 (1935), 777-779. | JFM | Zbl
,[8] Linear Partial Differential Operators, Academic Press, New York, (1963).
,[9] Espaces intermédiaires entre espaces hilbertiens et applications, Bull. Math. Soc. Sci. Math. Phys. R.P. Roumaine, Bucharest 2 (50) (1958). | Zbl
,[10] Une construction d'espaces d'interpolations, C.R. Acad. Sci. Paris, 251 (1960), 1853-1855. | Zbl
,[11] The group of isometries of a Riemannian manifold, Ann. of Math. 40 (1939), 400-416. | JFM | Zbl
and ,[12] On the differentiability of isometries, Proc. Amer. Math. Soc. 8 (1957), 805-807. | Zbl
,Cited by Sources: