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Introduction.

The present part of the « Theory of Bessel Potentials »
contains Chapter 1v dealing with potentials on regular Rieman-
nian manifolds. The next (and last) part to be published,
Part 1V, will contain Chapter v treating potentials on mani-
olds with singularities.

The classes of potentials P§, on a manifold I, or rather
the classes H§; which are the classes Pg; saturated relative
to the class of sets of measure zero, have been used extensively
in recent years (). However, they were intreduced essentially
for compaet C* manifolds or for compact bordered C*
manifolds. In these cases the Riemannian metric on the mani-
fold 1s not so essential since for different Riemannian metrics
on such manifolds we obtain the same classes :Pg, with possibly
changed (but equivalent) norm. Net-so -anymore is the case of
a non-compact manifold, when the class P§ sas wellasits
norm depend essentially on the metric. Therefore, the natural

-setting for the theory of Bessel potentials on a general manifold
is'the class of ‘Riemannian manifolds, i.e., differentiable mani-
folds with fized Riemannian metric. Our aim here is to develop
the theory of the classes ‘P§ for regular (C*) Biemannian
manifolds (or bordered manifolds).

In Section 1 we consider for a manifold ‘3% the classes
Pic(M) which are-easily defined and investigated by transfer
to local coordinate patches and use of the corresponding
classes in Euclidean domains as introduced in Chapter 1,
Part I.

{}) -For .instance, in the questions.connected. with the..Atiyah-Singer index theo-
rem.

12
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In Section 2 we introduce the classes of potentials Pj,
on IN. We take the natural and direct definition of P3, for
integral m and use quadratic interpolation to define P,
for m < « < m + 1. This kind of definition is not as direct
as would be desirable but from the theoretical point of view
it is the easiest to handle. Despite the fact that quadratic
interpolation was already introduced and used by several
authors (see for instance [2, 9]), in view of our specific needs
we found it necessary to describe this interpolation method
in Appendix I, especially as concerns interpolation between
functional spaces. We needed also in this section the notion of
equivalence of two different Riemannian metrics g and g
on the same manifold, which is a sufficient (and possibly
necessary) condition for equality of the two spaces P, ,
and P, , for all @ > 0 when I is provided with the two
metrics. This notion of equivalent Riemannian metrics is
investigated in Appendix [I. Among the several propositions
in this section we will mention Prop. 7 which allows us to
define more directly the classes P, in cases when the manifold
can be covered by coordinate patches satisfying rather strong
restrictions. In Prop. 8, under much weaker assumptions
than in Prop. 7, we obtain the result that P§' is dense
in P§, (in the norm of P§). The problem is open if this
result holds for all manifolds (2).

Section 3 1is concerned with k-dimensional Riemannian
submanifolds N of the n-dimensional manifold M (3).
We consider restrictions u' to N of functions ueP§ and
also extensions of functions u’' defined on N. If k=n
it is obvious that restriction from I to N transforms P,
into Pj with bound < 1; we give sufficient conditions
on N that there exist a bounded linear extension mapping
from P§ into P§,. For the case k < n, we give sufficient
conditions that the restriction map transform P§ boundedly
into P§®-92 o > (n — k)/2, and sufficient conditions that
there exist a bounded linear extension map from Pg*-bi2
into - P§, « > (n — k)/2. Since we use in this section simul-

(%) The density of Pg{* in P§y for m < « < m + 1 results from the definition

of quadratic interpolation.
(3) That is, C® submanifolds regularly imbedded in @ with the metric induced

by the metric of I%.
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taneous extensions of functions in P*~"~®2(R*) to functions
in P%(R") forall « > (n — k)/2, we describe these extension
mappings in Appendix 1T (%).

In Section 4 we investigate the classes of potentials on C*
bordered manifolds. For a bordered manifold I we define
the classes P (M) and show that via the restriction map
Pitc(MR) can be identified with a subspace of Pi.(I) where
¢ is the inner part of . For a Riemannian bordered
manifold I we define the spaces P§ and show that the
restriction map establishes an isometric isomorphism of P§,
onto P§:. Hence, in particular, each weP§: has «border
values » u’ e P;12(d9), where IR is the border of IN.
Also, in this section, for a C* bordered Riemannian manifold
M, we introduce the notion of the regular completion of
M — in a sense the largest C* bordered Riemannian manifold
containing I as a dense subset.

In Section 5 we give a few examples answering questions
connected with our considerations in the preceding sections.
The first two examples show that if a domain D in Euclidean
space i1s made into a Riemannian manifold by using the
Euclidean metric, then P§ 1s in general different as well from
P%D) as from P%D). Examples 3 and 4 show that, for a
general k-dimensional submanifold RN of the n-dimensional
manifold IR, the restriction of we P§, a« > (n — k)/2, need
not be in PHFC-2 and a function u’ belonging to
P52 need not have an extension ue P§,.

In the present part we did not put remarks concerning exten-
sions of our results to potentials connected with L” classes as we
did in the preceding Part II. The treatment of the classes
P§? 1s quite analogous to the treatment in the present paper
of P, which i1s the class P2 However, the formulas are
much more complicated and the essential difference is that
instead of using quadratic interpolation we have to use another
method of interpolation (for instance the complex interpo-
lation [5, 10]).

In the text we will refer to preceding parts of the « Theory
of Bessel Potentials » without mentioning the number of the

(4) In Chapter 11, Part I, we gave such extension mappings which were simul-
taneous extension mappings not for all « > (n — k)/2 but for « in a fixed interval.
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part, but only the number of the chapter, since in all parts
the: chapters are numbered in succession. We remind the
reader that Part I [4] consists of Chapters 1 and 11, Part I1 [1]
of Chapter 111, and the present Part III of Chapter rv. Thus, 3),
§9; II means Proposition 3 from § 9, Chapter 11 (of Part I).



CHAPTER 1V

POTENTIALS ON REGULAR MANIFOLDS

1. Pic(IM).

Throughout this section I is an n-manifold with a- C”
structure. All definitions are made using a particular C* atlas
{(U;, b))} for M. It is then shown that the concepts defined
are independent of the particular atlas used. For convenience
we use the notation V; = h(U,).

For each a > 0 we define Pf,(IMM) to be the class of
functions u on IR such that wo 7' belongs to P (V;)
for each :i. It follows from 3), § 9, II that Pf,(IM) is well-
defined, i.e. does not depend on the atlas used in its definition.
Similarly, for each « > 0 we define A,,(IM) to be the class
of all subsets A of I such that for each i, h(AnU)
belongs to A,,, the class of subsets R* with 2a-capacity zero.
Aso(M) 1s well-defined, by virtue of 20), §6, II and the fact
that a subset A of R" belongs to A,, iff each point of A
has a neighborhood whose intersection with A belongs
to Wss. The sets in A,,(IM) are called the subsets of IM with
2a-capacity zero. ,,(IM) is an exceptional class and Plo(IMN)
1s a saturated linear functional class rel. A,,(M). (For defi-
nitions of these terms see § 1, I.) Also we have the inclusion
relations : Pi(IM) c Pﬁ;c(‘)ﬁ) and  Aye(M) € Anpg(M) if B < a.
If «a=0, we will write L{ (M) for P{ (M) and «a.e.»
for « exc. Wpa(M) ». Sets in Y (IM) will be called sets of
measure zero. By virtue of 2), § 2, II., we have the following
proposition.
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1) If two functions in Pi(I) are equal a.e., they are equal
exc. Uga(M).

If D is an open set in R* and k is an integer > 0,
we say that ¢eC{P(D) iff ¢eC¥D) and every derivative
of order < k is locally Lipschitzian on D. For each integer
k > 0, we define C{%V(IR) to be the class of all functions ¢
on M such that ¢ oAt eCEV(V,) for each i. Also for
convenience we define C{EIP(IM) to be the class of all func-
tions ¢ on M such that, for each i, ¢ o A7' is a locally
essentially bounded measurable function on V. It is easily
seen that C&P(M) 1s well-defined. We sometimes write
Li(M) for the class CHEY(M). From 1), §9, I. and 6), §2,

I1. we obtain:

2) If ue P{ (M), « >0, and ¢ e CiZV(IN), then gu e Pf (M).
(Here o denotes the largest integer strictly less than o.)

The classes L{ (M), 1 < p < + o, can be defined in the
same way as L (M) and L3 (OM). If well (M), we say
that a point P on I belongs to the Lebesgue set of u
iff for some U; containing P, the point &;(P) belongs to the
Lebesgue set of wo hi'. In case P 1s in the Lebesgue set
of u, the Lebesgue correction of w at P, written u"(P),
1s defined to be (u o A7')"(hy(P)). From b), § 0, III it follows
that the Lebesgue set of u and the Lebesgue correction of u
are well-defined. Also, by classical theorems concerning
Lebesgue corrections and by the results of § 0, III, we have
the following four propositions :

3) If uell (M), then the complement of the Lebesgue set
of u has measure zero and u“(P) = u(P) a.e.

4) If u,veL], (M) and u(P) = ¢(P) a.e., then u® = o"

5) If uePy (M), then u ePi M) and u“(P)= u(P)
exc. Wga(M).

6) If u is equal ae. to a function tn P{ (M), then
u e Pl (M).

If MM isa C* p-manifold contained in IR, we say that a
coordinate patch U in IR agrees with I’ iff the points in
UnIM' are characterized by the equations ¥ = 2k k > p,
for some constants zf and UnIMN’ is a coordinate patch
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in I’ with coordinates equal to the first p coordinates
in U. We say that IR’ is a submanifold of I iff it can be
covered by coordinate patches in I which agree with it (%).
If M’ is a p-dimensional submanifold of IN, then 23), § 6
and § 8, 9 in Ch. 1, give us the following :

7) If AeWUpu(M) and 2a > n — p, thentheset A'=A n I’
belongs to Wso—n—py(M’).

8) If uePi (M) and 2a > n— p, then the restriction
n—p

u' of u to M’ belongs to P::,:T(Zm')

We now suppose that I has a positive definite Riemannian
metric of class C®. If U is a coordinate patch in I with
coordinates {z;} we let {g;} denote the components of
the metric tensor on U with respect to these coordinates.
The Riemannian metric induces on 3N a structure of a mea-
sure space. A subset A of I is measurable iff A(A nU)
is Lebesgue measurable for each coordinate patch (U, h).
Also, if A 1is a measurable subset of ¢ which is contained
in U, then the induced measure u is given by :

w(A) = [ Vely) dy,

where as usual g denotes the determinant of the matrix {g;;}.
Since I now has a measure space structure, the concepts
Lf.(M),1 < p < + o, and « set of measure zero » now have
a direct meaning. It is easily seen that the definitions of these
concepts in terms of the measure space structure agree with
the earlier definitions for manifolds not assumed to have a
Riemannian metric.

In order to have a direct definition of corrections for func-
tions on M, we use the concept of a normal coordinate
neighborhood. For every point P e IR there is an open neigh-
borhood U such that (1) each point Q € U can be joined to P
by a unique geodesic arc, and (i) this arc is uniquely deter-
mined by its tangent vector at P. Hence, new coordinates
Zy, ..., Z, can be introduced in U such that the geodesic

(5) This definition is equivalent to the following: M’ is a submanifold of M iff
M’ is contained in M and the injection map is of class C® and has a non-singular
differential at every point.
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arc through P with unit tangent vector T has the equations

x,-ztis, lzl, vy NN,

where s 1s the arc length measured from P and the ¢ are
the components of T with respect to some fixed orthonormal
basis. Such a neighborhood U together with the coordinates
Zy, ..., &, 1s called a normal coordinate neighborhood of P.
When U is such a coordinate neighborhood we use the nota-

tion U(P,p) for the neighborhood of P defined by Z at < P2

\

We can now define the Lebesgue correction of a functlon
ue L} (M) directly. We say that a point P eI is a Lebesgue
point of wu iff there is a number u“(P) such that

1 . R
w[U(P, )] f( JHQ) = w(P) du(Q) >0

as p— 0. Inthis case u"(P) is called the Lebesgue correction
of u at P. It is easily checked that this direct definition
of the Lebesgue correction agrees with the earlier definition
for manifolds without Riemanman metrics.

We can also define an analogue on % of the correction
u? (see § 0, Ch. ). However, we first define a more general
correction in Euclidean space which will be useful later (see
the proof of 4), § 4). Let D be an open subset of R". For
fixed zeD and each p, 0 < p < po(2), let ¢y (z, y) be a
measurable function of y defined for all y € R* and such that

(l) l??(x? y)l < MIP_n fOI‘ 0 < no < Po(x>, yER",
(ii) ¢pl@, y) =0 for |y —a| > Cop, 0 < p < pol2),

(i) [ra®pla> ¥) dy —1 as p—0.
If uell (D), we define

u(z) = lim o ¢¢(2, y)uly) dy,

provided the limit exists and is finite. If 2 is a Lebesgue
point of u, then u®(z) is defined and equals u%(z). Hence,
in case ¢, (z, y) is defined for all xe D, u® is an extension

of u® Also, suppose that ¢ is a bounded measurable func-
tion on R" vanishing outside a compact set and having
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/};"a[/ de = 1; if we define ¢,(z, y) = p™ (:I:_:_g) for each
zeD, then u® = u?. e

We now define an analogous correction u® on N. For
fixed PeI let U(P, po(P)) be a normal coordinate neigh-
borhood of P and for each p, 0 < p < go(P), let 9, (P, Q)
be a measurable function of Q defined for QeI and such
that :

(1) 19e(P, QI < Mpp™ for 0 < p < po(P), Q=M.

(ii) 94(P, Q) vanishes outside U(P, Cpp), for

0<op< Cip oo(P).
(i) f5, %P, Q) d(Q) >1 as p—0.
If uel} (M), we define
wP(P) =lim [y, ¢(P, Qu(Q) dp(Q),

provided the limit exists and is finite.

9) If ueLL (M) and P is a Lebesgue point of u, then
u®(P) exists and equals u“(P).

Proof. — This follows from the direct definition of u*
and the fact that
U(P, p)
2 -1 as — G,
150, ¢ °

where S(0, p) 1s the open ball in R® with center 0 and
radius p.
Thus, if ¢,(P, Q) is defined for all P e IR, u® is an exten-

sion of u".

10) If w, veL}i, (M) and u(Q) = ¢(Q) a.e., then uP(P)
exists iff VD(P) exists, and in this case they are equal

There are various ways to choose the correcting function

¢e(P, Q). One choice is:

4olP, Q)
P Q= 0@, )]

where y.(P, Q) is the characteristic function of U(P, p).
Another way to choose ¢.(P, Q) is as follows: Let ¢ be a

13
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bounded measurable function on R" wvanishing outside a
compact set and having ﬁ,,&[; dx = 1; for each PeIN let

(U(P, po(P)), hp) be a fixed normal coordinate patch at P
and define

%P, Q) = p~4 (_UPQ_>>

An important advantage of the correction u® over the
Lebesgue correction u® 1is that, while u" corresponds
roughly to the average of w over spheres, for suitable choice
of ¢,(P, Q), u® can be the average of u over more general
sets.

If u is any sufficiently smooth function on IR, the Rieman-
nian metric on YN enables us to define the tensor V¢u of
the k" order covariant derivatives of u. These are defined
inductively starting with V0w =u. If {A; .} are the
components of V*u, then the components of V*y are
given by :

dA.: . ;
A, a= éé,’""—gl %Aﬁ,...ik

1,0
] 7
- %lglg Ai,j...ik — elklg Ail...i,,__,j-

Here we use the usual summation convention; also, the

% l:’l% are the Christoffel symbols defined by :

J) =L i (28n | d8m g\
3iz§ 5 8 <bx’+ba;‘ >0

where {g"} is the inverse maxtrix to {g;}. By the results
of § 7, 9 in Ch. 11, we have:

11) If uePy (M) and k < a, then the components of
Vku with respect to the coordinates in any particular coordinate
patch (U, h), considered as functions on V = h(U), belong to
Pik(V). In particular, the tensor V*u is defined exc. Ugq—gr(M).

The Riemannian metric defines a natural norm on the tensor
spaces associated with . In the particular case of the tensor
V*u the expression for the norm in terms of coordinates is :

Ivku|2 = Ai«-uikAfa-ujkgi‘j‘ A gikjk’
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where {A; )} are the components of V*u. It follows
from the preceding proposition that if wuwePf (M) and
k < «, then |V*u|?2 belongs to L. ().

Remark. — Many of the notions discussed here extond to
the case where I@ has a C™ or C{®Y structure, m > 0.
If M has a C®Y structure, we can define P (M) for
0<a<m+1 and CEPOR) for 0 < k < m. In order to
define Ayu(M) for any « > 0, we require only that I
have a C{% structure. Similarly, if 9 has a C{% struc-
ture, we can define the classes Lf,,(3N), 1 < p < oo, and the
Lebesgue correction of a function in L} (I). Provided IN
has sufficient structure so that the classes involved are defined,
propositions 1) through 6) remain true.

If M’ is a manifold contained in IM and if I and M’
both have C™ or C{:¥ structure, then our definition of
submanifold still makes sense. Propositions 7) and 8) remain
true provided the classes involved are still defined.

For I to have a Riemannian metric, %{ must have at
least a C! structure; also, if 9 has a C™ structure, m > 1,
then a Riemannian metric on IN is at best of class C™1.
If 9 has at least a C! structure and a C° metric, then the
metric induces a measure space structure on I and the
spaces L (M), 1 < p < + oo, are the same as those
defined without the use of a metric. If I has at least a C?
structure and a C? metric, then normal coordinate neigh-
borhoods exist and belong to the natural C!' structure on IN.
In this case the Lebesgue correction defined using normal
coordinate neighborhoods is the same as that defined earlier
without them, and propositions 9) and 10) hold.

If M hasa CZY structure and a CI Y metric, m > 1,
then proposition 11) holds for « < m + 1.

2. The space Pg(Pj, ).

We shall assume that I is a separable oriented Riemannian
manifold with a C*® metric g.

If m is an integer we definie PJ, as the subspace of
loo(M) on which the m-norm, |u|,q (defined below), is
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finite; for non-integral «, P§ 1is defined by quadratic inter-
polation between P§ and Pg"' where m = «*. If we have
two metrics g and g on the same manifold IR we shall
add a suffix to prevent confusion, e.g. P§, , or |u|sm , (5).
For ueP[ (M) we define the Dirichlet integral of order m

by:

(2.1) d,m(w) = [ |V0u()|3 Vg da,
and the m-norm by :
22) el = 3 () dumtw)

a hermitian quadratic norm.
If DcR*® and e is the Euclidean metric then it is clear

from the definitions in § 2, III that Pj, = lv)”‘(D) and that
the corresponding norms are equal.

1) If m s an integer then Pg, s a complete functional
space relative Won(IM) and it is the perfect functional completion

of C=(IM) n PR

Proof. — Let UcI be open and such that its closure 1s a
compact subset of some coordinate patch (U,, h) and set
V = &(U). :

Now if {u,} is Cauchy in Pg,, it is clear from Theorems I
and II, App. II that u, o hy is Cauchy in P}, = Pn(V)
and converges to a function in P™(V). From this it follows
that P is complete.

Let {U,} be a covering of I, each U, having the same
closure properties as U above. Then by considering u,|y,
and the remarks of the previous paragraph it is easy to see
that PJ, is a functional space rel. Ay, (IM).

Suppose in addition that {U,} is locally finite. Let {g,}
be a partition of unity with ¢, eCg’(U,). Then by Prop. 6),
§2, 11, (pu) o kit e P*(h(U,)) for uePB and has compact
support in h,(U,). Therefore there is a w, e C°(h(Uy)) such
that |(@.u) o Ayt — Wilmmwo,s < €/2°; w0 by extended by

(6) If M is a domain in R® we shall always add the suffix to prevent confusion
with the standard a-norms, Cf. § 2, III.



THEORY OF BESSEL POTENTIALS 293

0 to M is clearly in Pf. Since {U,} 1is locally finite,
w = Zw, o h,e C*(IM) and

[u — wnm < 2|9 — Wy 0 Iy m
K

= X |quu o byt — Pl m, .0 < €
k

which proves C*(IR) n P§, is dense in P
If {$.}<Cs(V) (V=hn(U) as considered in the first
paragraph of this proof) are Cauchy in P™(V), and therefore
in Py, then ¢,k extended by 0 to MM is Cauchy in
- From this we can see that there cannot be a functional
completion of C=(M)n Py, relative a smaller exceptional
class that A,,(M). This completes the proof of Prop. 1).
From §1 and (2.2) we see that P3'€Pg, (7). Let G be
the non-negative bounded operator assigned by the Lemma
of Appendix I to the Hilbert subspace P§;t of Py, (Pgi+*
being saturated relative A,,(IM)) and for m < a < m 4+ 1
define W{ = to be the Hilbert subspace of Pg, corresponding
to G*™. By Theorem III, Appendix I, W{,A is the
(e — m) — th interpolation space between Pg and Pyl
Tueorem I. — P§HY, provided with the norm of W,
has a perfect functional completion relative Uyq(IM). This
completion is denoted by P, ; furthermore, P =Py (M) n WM.

Proof. — P is densein W, and W, is a functional
space rel. A, (OM). Hence, W  is a functional completion
of Pyt rel. A,,(M). However, each equivalence class of
functions in W{, rel. A;,(IM) contains a subclass
of functions in Pf (M). To see this, let u be a function in
W . and let {u,} be a sequence in Pg' which converges
to u in the norm of W{, . Let {(U,, h)} be a covering of
IM by coordinate patches such that for each k the closure
of U, 1s a compact subset of a larger coordinate patch
(Uk, Ri)is b 1is the restriction of h,, and

Vi = hi(Us) € §([0, o))
(see § 7, III). It follows from Theorems I, II of Appendix II

(") P €Piy means PHi'c P, and |uliy,m = |tln ;-
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and Theorem II and Corollary 4’ of Appendix I that for each k
the map u — u o h;' transforms Pj; boundedly into Iv)’(V,‘),
l=m, m+1, and W{, boundedly into P*V,). Hence
for each k& the sequence {u,o h;'} lies in 13"‘+1(V,‘) and is
Cauchy with respect to the norm of P#(V,). By taking suc-

cessive subsequences and using the diagonal process we get a
subsequence {u,} such that for each k, {u, o hi'} converges

pointwise to a function in f’“(Vk) exc. Wsa(Vy). Hence the
sequence  {u,} converges pointwise to a function
u e P (M) exc. WUy(M). It follows that u=u* exc.
Ann(MM).

By 1), § 1, any two functions in Pf (I) n W{™,, which are
equal exc. Ay,(M) are necessarily equal exc. Ay(IM). Hence
the equivalence classes in Pf, (M) n W™, relative to equality
exc. Ap(IM) are in one-one correspondence with the equivalence
classes in 'W{™, relative to equality exc. A;,(M). To show
that Py, (M) n W™, is a functional completion of Pg;"t rel.
NAsa(IM), it remains only to check that it is a functional space
rel. Ayo(MM). This is done easily by using the same procedure
as in the preceding paragraph.

That there cannot be a functional completion of Pg;?
relative to a smaller exceptional class is verified in the same
manner as the corresponding statement in Prop. 1).

Since P (M) <« Pi (M) and W, EWE,, we have
P3CPf, for m < B < @ < m + 1. Since this also holds for
« and [ integers ( < «), it holds for all « and §,
0<B <o)

Note that Pg, m < &« < m + 1, 1s the perfect functional
interpolation space between P§, and Pfi' relative to the
norm of W{ .  according to the terminology introduced in
Remark 1, Appendix I. Also, note that W{» , = P§, saturated
relative Ay, (M); therefore, we have by Prop. 6), §1, that if
ue W ., then u'ePg. This provides an alternative defi-
nition of P§ as {u":ueW{ _ } saturated rel. Ay, (M).

If g and g are two C” Riemannian metrics on IR, we
shall call them equivalent if there are constants A, < A,
and B,,m =1, 2, ... such that

1) the eigenvalues of g relative g lie between A, and A,

for all ze I and
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i) Sup {N,(g; 8)(#)} < B, where
zeM
Nn(g; 8)(z) = Max {Ig )| | V38(2)] )™}

It follows from Theorem I, Appendix II that this is an
equivalence relation.

2) If g and g are equivalent then P§, , = P§, ; for all «
and
Craltla,m, ¢ = |ula,ms < Coolula,m,,

where C, , and C, , depend only on A, A,, Byx,qy, @* and n(%).

Proof. — For a an integer, Theorem II, Appendix II
supplies the proof. For non-integral o we apply Theorem II,
Appendix I.

The terminology « multiplier » was introduced in § 1, IIIL
For the analogous definition on manifolds we call ¢ e C{TeP(IR)
a multiplier of order m if

|¢lnsr,om = Max {Fss Sup [Vog( )lgg < o ().

0<i<m+1 zed
(If m = — 1 this means that
pel”@)  and  glo.m = Ess Sup[g(z)] < o.)

If 9eC*°(M) and [¢|pom < © for m=20,1, ... then ¢

1s a multiplier of order .

3) If ueP§, and 9 is a multiplier of order a* then
oue P§, and
I?u'a,{m < 3“/2|?|a*+1,w,m| ula, m-
Proof. — By Prop. 2, § 1, quePf (M). Let a =m, an
integer, let | < m, and let (U, k) be a coordinate patch.
Then by the usual formulas for covariant differentiation we

have : | |
[Vipw)]li = % [V 0], [ V],

Here the left-hand side is the " component of the tensor
Vi(eu), where i = (3, ..., 1) is an indicial set. The summa-

(]) See Theor. I, App. II for a more precise expression for C, , and C, ,.
(®) If we wish to specify a particular metric we shall write I‘le w, M, g



296 R. D. ADAMS, N. ARONSZAJN AND M. S. HANNA

tion is over all partitions of the indicial set ¢ into two comple-
mentary indicial sets j and ;. The symbol |j| denotes the
number of elements in the indicial set j. For a fixed integer k,

there are exactl distinct partitions j'uj =1 where
y k 1Y ] vJ

|7l = k. Hence, we have:
s <[ 3 (1 )15t Thutol, |

< 2’[:;)]%,@,%,‘?__,0( llg >|V’;u(x)l§ a.e.
Thus -
Bl < 21eltum 3 ( ) dum(e)

k=0

loulnm < |oln me [< >2’ éo(\ >dkmz )]

k=

<loltem 3 [Z2( 4 )(7 )] dumie
< 3olt,..nlulbm

For non-integral «, an application of Theorem II, Appen-

dix I completes the proof.
We shall call {(U,, 9,)} a uniform system in M with

constants p and c,, m=0,1, ... if:

i) (U)e=1U, and {U,} has reduced rank p, 1.e. every
zeIMN is contained in at most p sets U, ().

i1) {9} cC(M), @ >0,
{x: ?k # O} c Uk and I?klm,eo.ﬂ)l < Cpny M = O’ 1’

and

(9 1s a multiplier of order o).

There will be no confusion between the « uniform systems
in MW» and the « uniform systems of g¢-cells » introduced in
§ 10, IIL

If A is a subset of I and the uniform system satisfies
the additional condition :

iii) Spe=1 on A (hence A< UUk),
k

(**) « Reduced rank p » is a weaker condition than « rank p » introduced in § 5, III.
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then we shall call {(U,, 9,)} a uniform system in IR covering
A. If the U, in the uniform system {(U,, ¢,)} are coordinate
patches, 1.e. possess a corresponding homeomorphism &,
into R", then we shall call {(U,, h, ¢,)} a uniform system
of coordinate patches.

The uniform systems are the replacement on manifolds of
the loose coverings with finite rank introduced in § 5, III.
The remaining propositions of this section give some of their
properties and applications.

4) Let {(Uy, 9:)} be a uniform system in IN with constants
p and c, We define the mappings I, and 1, by:

IL: P} —ZLPY, (Liu), = uly,
L: XL1Py, — P}, L(uy, oy e «..) = Zuu,

where @.u, is extended by 0 outside U,. Then for all a,
L(P%) « ZLP§, with bound < p'? and L(XL1P§,)cP§ with
bound < Cyuy 3*2p2.

Proof. — If ueP§, then clearly (I,u),eP{ (U,) and for

o = m an integer,
| Lul$leg, = X |ulh v, < plulsm
k

The conclusion about I, now follows by Theorems II and V
of Appendix I.

To prove our statement concerning the mapping I,, we
first prove the following three facts. (We use the notation o,u,
to denote the extension of ¢,u, by zero outside U,; no
confusion will result from this).

(2.3) If w,ePg, then o¢.u,ePh (M).

(2.4) If u,ePg, then Vieu) =0 a.e. outside U, for
0<l<sm

(2.5) If w,ePg, then (pu,)" = pu, on M. (We assume

here that u, is a corrected function.)

Let u, be a corrected function in Pg,. It is obvious that
(2.3) and (2.5) hold on U, and that (2.3), (2.4) and (2.5)
hold on (M — U,)o. Consider a point zedU,. Let U’ be a
neighborhood of =z such that U’ is a compact subset of
a coordinate patch U with homeomorphism A, and such
that A(U’) is an open sphere about h(z). Let V = A(U),
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V' = h(U"), Dy = h(Uyn U"), Dy = V' — D,, and
D = [D, u D, u (3D, ndD,)]o.

By referring to the property (U,)°= U, we obtain easily
that Do V'. Define

9(8) = uy o h1(§) for teD,

YE) =@ o h1E)  for EeV.

We have vePp ,= pm (Dy), $eC(V), |Y|,v,e < + © for
all I, and Dy{(§) =0 for ;eV — D, and all . It follows
that there exists a constant M such that

(2.6) |DAE)] < Mro ()™ (1) for || < m, EeV.

Formula (2.6) implies that J, p »p(}¢) < + ©. By
Theorem I, part (a), § 9, III (and its proof) it follows that the
extension of ¢ to V' gotten by setting it zero outside D,
is equivalent to a function in P™(V’). For convenience we
denote this extension by {¢. By applying (2.6) we see that
(yo)t =d¢ in V', so that {¢ actually belongs to Pr(V').
Also, by using (2.6) and the Lebesgue correction we see that
all derivatives D,({¢), [i{] < m, are zero on V' — D; except
possibly on a set of measure zero.

Next we prove a finite version of our statement about I,,
namely :

N
2.7 If w,ePt, for k=1, ...,N, and u= 3 q.u,

k=1

and

then ueP§ and |uli g < pcix3* X |wil? v,
k=1

First suppose a« = m, an integer. Then for each k we
have o¢,u, e Pj(M) by (2.3), and
I?kuklm,m = |?kuk|m, Uy

by (2.4). By applying Prop. 3 to the manifold U, we see
that ¢,u, Py and

'?kuklm, m < cm3M/2I uklm, Upe

(*) rp,(E) is the distance from £ to D,. For the definition of J, o, see

§ 9, I1I
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Statement (2.7) for the case « = m follows directly once we
notice that due to (2.4) and the finite reduced rank of the
system {U,} we have:

N N

S gan] < p 3 laanbn

k=1 , M k=1

For the case m < &« < m + 1, Theorems II and V of Appen-
N

dix I give that u = ) o,u, belongs to W{  and satisfies
k=1

[ ul¥wem, < pc§*+l3a > ]uklg, Uy
k=1

However, by (2.5) we have u"=u, so ueP§.
Finally, suppose  (u, Uy, ...)€ i-LP%k. If we define
Z @iy, then by (2.7) {wnx} igz; Cauchy sequence in
P;m On the other hand, wy converges pointwise to u = 2 Prlly

everywhere on . Hence, ueP§; the bound for |u|a,m
follows directly.

Let d, g(z, y) be the geodesic distance from z to y in I
with respect to the metric g (e.g. d. iz, y) = |z — y|). U?
was defined in § 1, III as {y:d, rs(y, R* — U) > 8}. We now
introduce a more general definition which contains this one.
Let U be an open subset of IN; we define

0o = {g:d, y(z, M — U) > 3}.

If UcDcR® then U%%P>5U%%® (and this may be a strict
inclusion). For convenience, and consistency with Chapter 1,
we shall write U for U>»“® when UcR™

It was already remarked that the uniform systems in IR
replace for Riemannian manifolds the notion of loose coverings
of finite rank which was used extensively in Chapter 1.
The notions introduced above allow one to speak about a
loose open covering {U,} of a set A in M. Namely, it

would be a covering such that, for some >0, A c U Udo:,

k
The next two propositions will show that if {U,, ¢,} 1is a
uniform system in N covering A, then actually {U,}
is a loose covering of A (Prop. 5); whereas if we have a
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loose covering {U,} of the whole of IR, it is only under
some additional strong assumptions that we are able to prove
the existence of functions ¢, such that {U,, ¢,} is a uniform
system covering I (see Prop. 6). Since the use of loose
coverings was important because they allowed one to define
corresponding partitions of unity, we have to accept, in the
case of manifolds, the replacement of loose coverings by
uniform covering systems which have already built in the
corresponding partitions of unity.

5) If {(Ui 9x)} ts a uniform system covering I with
constants p and c,, then 9)}=UU,§'9'9“ for any ¢ <1/(pcy).
k

Proof. — Suppose z; e M — U Up# ™, Since Y qu(zy) =1
k k

and there are at most p non-vanishing terms, there is a k,
such that ¢, (z) > 1/p and

dg, o (T1, m — Uk.) = inf dg,SR(xl, y) < é.

reMh— Uk‘

Let {z(t)}o<i<a bea C!' arcin M such that z(1) =2, and
2(0) = 2o e M — U, le. ¢, (z,) = 0.

Then, 4(t) denoting the tangent vector %,

1p < @u(@) — @u(@o) = [, [(t) o Vpp(a(t))] dt
< |Pi, )1, m X [arc length of {z(t)}].

Since the arc length can be made smaller than any ¢ > g,
we have & > 1/(pc;), a contradiction.

6) Let {(U,, h,)} be a set of coordinate patches such that :

1) (U)o =U, and {U,} has reduced rank p,
i) M =|_Jupon,
k

i) g is uniformly equivalent to e on each h,(U,), t.e. the
constants A, A, and B, in the equivalence relation are
independent of k,

iv) there are constants ¢ and b > 1, independent of k,
such that for any =z, yeh(U,), if |z —y| <38, then
g, non(@ Y) < blz — yl.



THEORY OF BESSEL POTENTIALS 301

Then there are o@,s such that {(U,, h, ¢,)} s a uniform
system of coordinate patches covering I with constants p

and c, = c,p™A;™? <B,,, -+ ——g—)m where c, depends only on n

and m.

Proof. — Let V,= h(U2*®) and W, = S<V,,, %) (the

—2—% neighborhood of V, in R")- Then V,c W{#®. Suppose

ze W, n h (U, — U¥2oR) Then by iv) and since ze W,

)
—2— > bder“"(x’ Vk) 2 dg.hk(Uk)(x’ Vk) 2 dg.‘.m(hk_l(x), Ui’g’m).

Thus

dg, (it (), M — Uy) > dp (M — U, U ™) 5

— dy,m(UFS®, ih(a)) > & — +

contradicting the fact that xzeh (U, — Ud2oM) 5o that
Wk n hk(U - Ua/2 g m) - O

By Lemma 1, § 1, III there is a ¢, eC*(R"), 0 < ¢, <1,
=1 on V,, =0 outside W,; hence \pk—O on
h(U, — Uf22M)  and  |Dyy(x) <48b> Cip G depending
only on n and |[¢].

Therefore if we transfer ¢, to U, and extend it by 0
to M — Uy, $y o by C*(M). By 1) and 11) S Xpoh, < p
so that the desired partition of unity is given by

x =4/k0hkx/§q),0h,w

The inequality follows from (AII 4) of Appendix II and an
easy calculation.

7) Let {(Uy, hi, )} be a uniform system of coordinate
patches covering I with constants p and ¢, such that:

1) g is uniformly equivalent to e on each h,(U,), i.e. the
equivalence constants A,, A, and B, are independent of k,

1) V, = h(U,) €eé([m, m -+ 1]) with extension constant
[' = T([m, m + 1]) independent of k.

Then for m<a<m-+1, ueP§ if and only if
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(wo hil, ..., uohit, ...)e2LP%V,) and

pI2Culem < 2w e B3 v, < 3% pl* Gt ultm
k

where C, . and C,, are the constants given in Prop. 2).

. Proof. — By Prop. 2) and Corollary 4), Appendix I,
P#(V,) = P%,,. The proposition now follows from Prop. 4)
(and the inequality follows from the inequalities in the cited
propositions). . .

In general it is not known if P"+(D) is dense in P™(D),
DcR® In § 5, III we show that this property is a weakly
localized boundary property. The next proposition gives an
analogous, though weaker, result for Pg,.

8) If {(Uy, 9x)} is a uniform system covering I such that
Ptrt is dense in Pg, then Pg™' is dense in Py,

Proof. — If uePg, then by Prop. 4), Y |uli vy, < .

k
Now by choosing w, e Pg;, |w, — ulh u, < ¢/2%, we have by
Prop. 4) w = ILy(wy, ..., w, 0, ..., 0, ...)ePg" and by
choosing k, sufficiently large we have the desired approxi-
mation.

Remark. — The notations and results of this section extend
to the case where I hasa C™ or C{I;? structure by obvious
modifications.

3. Restrictions and extensions.

In this section M is a C® Riemannian n-manifold and N
is a k-dimensional C” submanifold of I with the induced
Riemannian metric. We consider restrictions to 0 of poten-
tials on I and extensions of potentials on N to potentials
on M.

First considering the case k = n, we have:

Tueorem 1. — If k= n, then the restriction mapping
u—>u, = ulg transforms P§ into P§ with bound < 1,
for each o > 0.

Proof. — For integral o this statement follows by compa-
ring the expressions (given by integrals) for |u,s and
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|u|q, ;- For non-integral a it follows from Theorem II of
Appendix L

Clearly the restriction mapping u — u,; does not necessarily
map P§ onto P%. For example, let M =R" and let N
be a domain in R” which does not have the extension property
(for instance, a domain with a cusp on its boundary). To get
sufficient conditions for the existence of a linear extension
mapping, we first state a theorem which allows us to localize
the problem.

Taeorem II. — Assume a > 0. Let {(U,, ¢;)} be a uni-
form system in IMM covering N with constants p and {c,}.
If for each i there is a linear extension map of P%,nq into PE,
with bound < Mg, My independent of t, then there is a linear
extension map of Py into P§ with bound < cury1p3*2Mg.

Proof. — Let ueP§ and let u; = u|ynn. By 4), § 2, the
sequence (U, U, ...) € 21PE ng, so the sequence of extensions
(@, Gy, ...) belongs to XLP§. Applying 4), § 2, again, we
see that the function @& = Y94; belongs to P§. The bound
for |i@|, g follows from 4), § 2.

Remark 1. — It is clear that if for each ¢ there is a simul-
taneous linear extension map from P§,y into P§, as «
varies over an interval, then there is a simultaneous extension
map from P§ into P§ as a varies over the same interval.

Theorem II can be applied, for example, in the case that
the sets U; are coordinate patches. In this case the question
of existence of an extension mapping from P§,.5 into P,
can be transferred to the image sets in R". The following
proposition gives sufficient conditions for the existence of an
extension mapping from P§ , into P§, where D is an
open subset of R", D; is an open subset of D, and {g;}
is a C® Riemannian metric on D.

1) If {g;} tis equivalent to the Euclidean metric on D with
constants A, A,, and {B,}, and if D, e8([my, my]) with
extension constant [, then there is a simultaneous bounded
linear extension map of P$ , into PP, m < a < my,

with bound < cl'y, where ¢ depends only on n, m,, A, A
and B,

Proof. — For integral « the result is gotten, with the help

ur
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of 2), § 2, by first extending to R" and then restricting to D.
For non-integral « the result follows from Theorem II of

Appendix I
We now consider the case k < n. By 8), §1, if ueP§,
«>2= k, then u’ = ul|y belongs to Pg;*2(N); however,

2
u’ does not necessarily belong to P92 (see Ex. 3, § b).
2
extension ueP§ (see Ex. 4, § 5). We give here sufficient
conditions that the restriction mapping u — u’ transform
P§, into P§*=®2 and that there exist an extension mapping
from P§ ™92 into P§. First we state a theorem similar
to Theorem II which reduces these questions to local questions.

. n
Also, a function u'ePF—2 o > » may have no

Tueorewm III. — 10 Let {U;} be open sets in M and {{;}
be C* functions on N, such that the collection {U;} has finite
reduced rank p in M and {(U;naN, $)} is a uniform
system in N covering N with constants p and {c,}. If for
each v restriction from U; to U;nN transforms P§, into
PP with bound < Mg, Mwx independent of 1, then
restriction from M to N transforms P into PEFr-M2

with bound < cgeiq p3f2My where f = a — n ; k,

20 Let {(U;, 9,)} be a uniform system in IN covering N
with constants p and {c,}. If for each i there is a linear
extension map of PE{R®? into P§, with bound < Mg, Mg
independent of i, then there is a linear extension map of
PE ™02 tnto P with bound < cCoxyyp3*2Mp.

Proof. — The proof of 20 is the same as the proof of Theo-
rem II; the proof of 1° 1s similar.

Remark 2. — A remark similar to that after Theorem II
applies here. If the common bound for the restriction maps of
P, into Pg{w®® is valid for all « in an interval, then so
is the bound for the restriction map of P§ into PH®™»72
Also if for each ¢ there is a simultaneous linear extension
map from P{ {52 into P, as a varies over an interval,
then there is a simultaneous linear extension map from
P5i™®2 into P§ as a varies over the same interval.



THEORY OF BESSEL POTENTIALS 305

In the case where the U; are coordinate patches in I
agreeing with N, we can transfer questions about restrictions
and extensions to the image sets in Euclidean space. We now
prove two propositions dealing with these questions; however,
for convenience we first prove a lemma.

Lemma. — Let D be an open set in R® with a C® Rie-
mannian metric  {g;} which is equivalent to the Euclidean
metric on D with constants A, A,, and {B,}. Then:

(a) Restriction from R* to D transforms P*R") boundedly
into P§, for each @ > 0. For 0 < a < m this map has a
simultaneous bound depending only on m, n, A,, A,, and B,,.

(b) If D e&([my, my]) with extension constant ', then there
is a simultaneous linear extension map of P%, into P*R"),
my < a« < my, with bound < c[' where ¢ depends only on

my, n, A, A,, and B,

Proof. — These assertions follow for integral values of «
directly from 2), § 2. Theorem II of Appendix I then shows
that they hold for non-integral .

In the following two propositions D is an open subset of
R* with a C* Riemannian metric {g;} and D’ = Dn R*
&'([my, my]) 1is the class of domainsin R* having the extension
property on the interval [m;, m,].

2) If {g;} is equivalent to the Euclidean metric on D with
constants A, A,, and {B,}, and if De§([my, my]) with
extension constant [', then restriction from D to D’ maps
P$., boundedly into PE G2 for each ae [m,, m,] such that
a > (n— k)/2. For a in any interval [ay, a,] c [m,, my] where
a; > (n—k)[2, this map has a simultaneous bound < cl’
where ¢ depends only on n, k, my, &y, Ajy A,, and B,,.

Proof. — Starting with a function on D, we extend it to
R®, then restrict that function to R*, and finally restrict the
resulting function to D’. The above Lemma and Theorem 1a,
§ 8, 11, justify these steps.

Remark 3. — The derivation of the bound in 2) shows that ¢
approaches infinity as o, \( (n — k)/2.

3) If {g;} is equivalent to the Euclidean metric on D with
constants A, A,, and {B,}, and if D'e8'([my, my]) with
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extension constant [, then there is a simultaneous bounded
linear extension map of PH ™2 into P§, for « in any
interval [ay, ay] < [my + (n — k)[2, my + (n — k)/2] such that
a, > (n — k)/2. The simultaneous bound s < cl” where ¢
depends on n, k, my, A, A,, and Bgs.,.

Proof. — The proof is similar to that of 2), except that the
procedure is reversed. Starting with a function on D', we
extend it to R*, then extend that function to R", and finally
restrict the resulting function to D. The Lemma of the
present section and Theorem I of Appendix III justify the
steps involved.

4. Bordered manifolds.

In this section we consider potentials defined on a C”
bordered n-manifold . Such a manifold is defined in the
same way as an unbordered one except that if (U, &) 1is a
coordinate patch in I, then A maps U homeomorphically
onto an open subset of R” rather than onto an open subset
of R" (We use the notation R%} for the open half-space
xz, > 0; hence R" is the closed half-space z, > 0. We
denote by R™! the hyperplane xz, =0 bounding R%).
Points in I which correspond via the coordinate homeo-
morphisms to points in R% are called inner points of IN;
points which correspond to points in R™! are called border
points of M. The set of all inner points of IM we call the
inner part of I and denote by IN'; the set of all border
points we call the border of I and denote by 2. We
remind the reader that M and dIN form unbordered mani-
folds of dimensions n and n — 1 respectively.

If D is a relatively open subset of R%, we say that
ueP{ (D),a>0, iff u hasanextension @ toanopensubset D
of R” containing D such that @ e P (D). Itiseasily checked
(by using a partition of unity) that u e Pj, (D) iff each point
in D hasanelghborhood (openin R%) on which u coincides
with some function in P#*R"). Now suppose M is a C~
bordered n-manifold (without a Riemannian metric); let
{(Uy hy)} be an atlas for M. For a > 0 we define Pf (M)
to be the class of functions w on M such that, for each k,
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u o bt e Py (h(U,)). By using the second characterization of
P{.(D) given above it is easily proved that P (M) is
well-defined. The exceptional class A,,(IMM) is defined as in
the case of unbordered manifolds; P{ (IM) is a saturated
linear functional class rel. Ay q(IM).

We now consider restrictions of functions in P§ (M) to
IM: and dIN.

1) For a > 0 the restriction map u — u' = u|gy transforms
PE. (M) into P{ (M. Moreover, this map is one-one.

Proof. — The first statement is immediate. To prove the
one-one-ness, suppose u, weP{ (M) and u' =w. Let
(U, h) be a coordinate neighborhood of a border point and
consider the functions w o A~* and w o k71, If ¢ isabounded
measurable function vanishing outside a compact subset of

R", such that ‘/‘cp de =1 and ¢ =0 for z, < 0, then by
the results of § 0, III,

(uoh™)?=wuoch? and (woh™)?=woh? exc. WUso(h(U)).
However, since
uoh™ = woh? for z, > 0, (uoh™)? = (wo h1)%.

Note that the mapping uw — u' of Pf (M) into P (MY
is not in general onto. Because of 1) we can use this mapping
to identify P (M) with a subspace (proper, in general) of
Pioo(M).

The proof of the following proposition is direct.

2) For a > 1/2 the restriction map w —> u’' = ulygy, trans-
forms Pi (M) into Pi2(0M).

We call the function u’ the border values of u. Hence,
each function weP} (M), « > 1/2, has border values
u' e PE2(dIN). The map w — u’ is not necessarily one-one;
however, the following proposition shows that it is onto.

3) For « > 1/2 there is a simultaneous linear extension
a—1/2

map u' — u transforming PEI}0M) into P (M).

Proof. — Let {(U,, hy)} be alocally finite open covering of
O by coordinate patches in I, and let {¢,} be a corres-
ponding partition of unity such that Xg, =1 on 2. We
may assume that for each k the closure of U, is a compact
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subset of a larger coordinate patch U; and h, is the restric-
tion of the corresponding homeomorphism h;. Let
$re Gy (R*1) be such that ¢, =1 on A (U,)nR*? and
¢, =0 outside a compact subset of A, (U,)nR*1. By 1),
§ 9, 1I, given u’'ePi*2(dM), the function (v’ o ki),
extended by zero outside hi(Uy) n R™, belongs to
P+12(R"*') and agrees with u'oh* on A (U,) n R
Extending this function to R"® by means of Theorem I,
Appendix III, we obtain a function ¢, eP*R") such that
pp=1u' okl on h(U)nR*t The function ¢,y o hy),
extended by zero outside U,, belongs to Py (IM). Hence,
u = 2@ o h)ePi (M) and uw=1u" on dIN.

Remark 1. — We say that a function wue P (M), « > 1/2,
has border values iff there exists a u’ e Pj5Y2(d3R) such that
the function @ defined by @ =u on M, & =1u" on >IN,
belongs to Py (M). It is clear from 1) that if a function
u e Pf (M) has border values, they are unique. Also we see
that the subspace of functions in P (') having border

loc

values is exactly the subspace which we have identified with

Too(M).

Now assume that the bordered manifold I has a C~
Riemannian metric. For m an integer > 0 we define P,
to be the subspace of Pj; (M) on which the norm |u|,
(defined in the same way as in the unbordered case) is finite.
P, (with the norm |u|, g) is a complete functional space rel.
Un(M). For m < « < m + 1 we define P§ by quadratic
interpolation between Pg;"! and Pf,. Thatis, if W{"), is the
(e — m) — th interpolation space between Pg;! (saturated rel.
Wpa(M)) and Pg, then P! (provided with the norm of
W) has a perfect functional completion rel. A;,(M);
denoting this completion by P§,, we have Pg, =P (M) n W™,
With these definitions we have the following theorem.

TaeoreM I. — For a > 0 the restriction map u — u' = u|g
is an isometric isomorphism of P, onto Pg.

Proof. — Suppose « = m, an integer. It is immediate that
the mapping u — u' transforms P§, isometrically into Pg.
To show that this mapping is onto Pg, it is enough to show
that each w e Pg: has an extension & e P (IM). To do this,
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let wePqy, let {(U, h,)} be alocally finite covering of I
by coordinate patches, and let {9,} be a corresponding parti-
tion of unity. We may assume that, for each k, U, is a compact
subset of a larger coordinate patch U} and A, is the restric-
tion of the corresponding homeomorphism k.  Let
{, e C*(R%) be such that , =1 on hy(U,) and ¢, =

outside a compact subset of hy(Ui). Then ¢, (w o hi™),
extended by zero outside hi(U.) n R%, belongs to Pm(R%)
and hence has an extension in P™(R"). Thus the function
w, = w|u,am¢ has an extension &,ePi (U,). Setting
® = Yo,¥, we get that #e Pl (M) and & =w on M.

For non-integral « the theorem follows by Theorem II
of Appendix I.

By Theorem I and Prop. 2) each uePg§:, a > 1/2, has
border values u’eP2(d3R). Moreover, we can give a
formula expressing u’ in terms of u. To do this we introduce
the notion of a normal coordinate neighborhood of a border
point P of IN. First, let U’'(P, p) be a normal coordinate
neighborhood of P in oYk, where we consider I8 as a
Riemannian (n — 1) — manifold with the metric induced by
M, and let =, ..., z,-; be the coordinates in U’(P, p).
From each Qe U’(P, p) there issues a unique geodesic arc
in IM normal to dIM. Also, for each p < some fixed p,
there exists a ¢ > 0 such that the normal geodesic arcs up
to length & are mutually disjoint and cover an open neigh-
borhood of P. In this neighborhood we choose the coordinates
Zy, ..., , where =x,, ..., x,_; are as before and =z, is the
arc length along geodesics normal to d¥R. Such a coordinate
neighborhood we call a normal coordinate neighborhood of P.
We use the notation U(P, p) for the particular normal coor-
dinate neighborhood defined by :

n—1
Y x? < gt 0<uz <p
i=1

4) Let ueP§u, o > 1/2, and let u' be the border values
of u. Then:

"(P) = im——il u
(@) WP =lim f o, UQ Q)

for all PedI exc. oy (OM).
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Proof. — Since we assume that IR satisfies the second
axiom of countability, it suffices to prove that each point
P, edI has a neighborhood U such that (4.1) holds for
all PeUnoI exc. say(UndM). Fix a point P, edIN
and let (U, h) be a coordinate neighborhood of P,. If
uePi, « > 1/2, then we know that ¢ =wuoh™? has an
extension ¢ to anopensubset V of R* containing V = h(U),
such that ¢ePg (V). We will show that if z is a Lebesgue
point of ¢, ze Vn R, and P = h'(z), then the limit in
(4.1) exists and equals ¢“(z). To do this we apply the genera-
lized correction defined in § 1. For y near z define

2 ) = Lve oY) Va(y)
%l ) = S0 )

where W(z, p) 1s the image of U(P, p) under A. That
¢c(z, y) satisfies the conditions (i)-(iii) for a correcting function
stated in § 1 follows directly once we notice that there exist
positive constants ¢; and ¢, (depending on z) such that

H(z, ¢1¢) « W(z, p) < H(z, cxp),
where H(z, p) denotes the half-sphere
{y:lz —yl <p 0 <wu}

If ueP§, « > 1/2, the border values u’ are not neces-
sarily in P33} (Example 3, § 5, can be modified to show
this.) Also, if v’ € P§l? « > 1/2, ¥’ may not have an exten-
sion ueP§. (Example 4, § 5, can be modified to give an
example of this.) Sufficient conditions that the restriction map
u—>u' transform P§ into P G}? and sufficient conditions
that there exist a bounded linear extension map transfor-
ming PJ3!% into P§, can be obtained by methods similar to
those used in § 3.

We conclude this section with a discussion of the problem
of completion of a bordered Riemannian manifold. Myers and
Steenrod in their paper [11] and more recently and precisely
Palais in his note [12] have proved that, given a metric space
X with a distance function d, there exists at most one unbor-
dered C* Riemannian manifold structure on X such that the
geodesic metric agrees with d. Moreover, given a metric
space (X, d), there is at most one bordered C® Riemannian
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manifold structure on X such that the geodesic metric
agrees locally with d (*2). From this fact it follows that, given
a metric space (X, d) and given n > 0 thereis a umquely
defined largest open subset U of X having a bordered C®
Riemannian n-manifold structure with geodesic metric agreeing
locally with d.

Now let I be a C* bordered Riemannian n-manifold,
let M be the abstract completion of I with respect to the
geodesic metric, and let d be the metric on . We denote

by IN* the largest open subset of 9 having a bordered C*
Riemannian n-manifold structure with geodesic metric agreeing

locally with d. Since I is an open subset of I, IM < IM*.
Moreover, ' is a submanifold of (IM*)' and dIMN is a
submanifold of d2MM*. Also, since M is dense in W, we

have (M)* =IM*. We call M the full completion of IM
and IM* the regular completion of IN. For example, if IMN
1s an open square in the plane with the usual Riemannian
structure, then I is the closed square while IN* is the closed
square minus the corner-points.

As an example of the use of the of notion regular completion,
suppose that I is an (unbordered) C* Riemannian n-mani-
fold with a compact regular completion N* such that
(M*) — M  has (n — 1)-dimensional measure zero (for
instance, M = an open disk in the plane with the usual
Riemannian structure). Then each wueP§, a > 1/2, deter-
mines unique border values u’ e Pl Also, the class Pg?
1s dense in P, for each integer m > 0. These statements
are proved by using Theorem I’, § 3, III, and the fact that
we can cover IN* by a finite number of coordinate patches
which are as regular as we please.

5. Examples.
Ezample 1.

From Corollary 4" of Appendix I it follows that if D is an
open subset of R" belonging to &([m, m 4 1]), then

(*?) In addition, one can give metric properties on (X, d) which are necessary
and sufficient for the existence of such a structure. These results will be proved in
a later paper.
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13“(D) =P§, for m < « < m+ 1 (and the norms on these
spaces are equivalent for each «). Here we give an example
of an open set DcR' such that P%D) # P§, for
12 < « < 1.

Let D be the domain obtained by removing an interior
point from a finite open interval. Let D; and D, be the two
components of D, and for any function u on D let
and u, be the restrictions of u to D; and D, respectively.
By Theorem V of Appendix I, the [correspondence
u<—> {u;, uy} defines an isometric isomorphism between

P§ . and P§ , + P§ ., for each a > 0. Also, if uels“(D),
then {u;, u,} eP¥D,) + P¥D,) and 3 |u», < cul?o.

Since for k=1, 2 and all « > 0 the spaces P*D,) and

$.. coincide and have equivalent norms,

P*(D) cPp. for « >0, (c meanscontinouslyimbedded).

On the other hand, if 1/2 < « < 1, the function u =0
on D,, =1 on D,, belongsto P§, but not to P*D).

Ezample 2.

This is another example where P¥D) # P$,..; 1n this
case D is connected.

Let D be an annulus (in the plane) which is slit along a
radius. By introducing polar coordinates relative to the center
of the annulus and the slit, we define a homeomorphism T
of D onto a rectangle D*, such that T and T are C
with bounded derivatives. T defines a correspondence
between functions u on D and ¢ on D* given by:
u(z) = ¢(Tz). From the properties of T and the Interpolation
Theorem of Appendix I, it follows that for each « > 0,
uePf, iff vePf . and in this case their norms are equi-
valent. Also, since T-! is Lipschitzian, ueP%D) implies
9« *P(D*) and

Ivla’Dt < cluld,D’ o = 0.

Since the spaces P$., and f’“(D*) are equal and have
equivalent norms, P“(D)?P%,e for « > 0. On the other
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hand, if 1/2 < « < 1, a smooth function uw which =1
near the upper edge of the slit and = 0 near the lower edge
of the slit, belongs to P%, but not to P¥D).

Ezxample 3.

Let MM be an n-dimensional Riemannian manifold, let N
be a k-dimensional submanifold, and suppose a > (n — k)/2.
Theorem III, § 3, gives sufficient conditions that restriction
from M to N transform P§ boundedly into PFe—H2 In
the example below this restriction property does not hold.

Let f(z) be a positive continuous function on
— o <z < + o such that f(z) >0 as |z >+ oo.
Let 9 be the open set in the plane: |y| < f(=),
— 0 < x < 4+ o, with the Euclidean metric, and let R
be the z-axis. Assume that f is chosen so that N has finite
area. Then the function u = 1 belongs to P}, but its res-
triction u’ to N does not belong to P}?* (sincein particular
u' & PY).

Ezample 4.

Again, let I be an n-dimensional Riemannian manifold,
let N be a k-dimensional submanifold, and assume
a > (n — k)/2. Theorem III, § 3, gives sufficient conditions
for the existence of a bounded linear extension map of
P ™*2 into P§. Here we give an example where such an
extension map does not exist.

Let MM = R® with coordinates =z, y, 2. Let N be the
surface gotten by revolving a curve y =f(z) about the
z-axis. Assume that f(z) 1is positive and C® on
— o < x < + oo, that f(z) >0 as |2] -+ o insucha
way that R has finite area, and that f®(z) is bounded on
— o <z < + o for each k >0 (for example, take
f (z) = ™). The intersection of N with the (z,y) — plane
consists of two symmetric generating curves. Let C denote
the curve lying in the half-plane y > 0.

The function u’ =1 on N clearly belongs to Pj. On the
other hand, u’ does not have an extension ue P3?, because
if it did, the restriction u” of u to C would belong to P¥2.
(This can be verified as follows. Define a transformation
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(& m, 0) =T(z,y,2) of M onto R® by:
E:a:, 7]=y—f(x), Z=Z.

T is a homeomorphism which maps C onto the §-axis. If
o 7, {) =u(z, y, z), then ¢eP¥(R3 and hence the
restriction ¢” of ¢ to the &-axis belongs to PY2(R!). This
implies u” e PY2.)



APPENDIX I

The quadratic interpolation.

For completeness sake we give here the definitions and
proofs concerning quadratic interpolation. They were presented
in the literature [2, 9] in different forms and not so completely
as needed here.

We start by considering a compatible couple of Hilbert
spaces V and W. The shortest definition of what such a
compatible couple means is that both spaces V and W are
Hilbert subspaces of a common topological Hausdorff vector
space (3). This topological vector space plays norole whatsoever
in the considerations, and it is of importance to state the
intrinsic properties of the couple which make it compatible.
These characteristic properties are the following [3]:

10 [V, W] form a linear couple, i.e. VnW 1is a linear
subspace of V as well as W and the corresponding identi-
fication (coupling) mapping = 1is a linear isomorphism of
VnW assubspace of V onto Vn W as subspace of W.

20 The identification mapping = is a closed mapping from
V into W, 1e.if {2,}cVnaW isa Cauchy sequence in V
and in W then its limitsin V andin W are equal and thus
contained in Vn'W.

For a compatible Hilbert couple [V, W] the vector space
VnW has a direct meaning. The vector space V 4+ W has
still a direct meaning if V and W are Hilbert subspaces of
a common vector space, whereas if we use the intrinsic defi-

(*3) Hilbert subspace means a subspace with its own hilbertian structure such
that the corresponding injection mapping (identity mapping) is continuous.
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nition we identify V -+ W with the quotient space (V-4 W/Z)
where Z is the closed subspace of the direct sum V 4+ W

composed of couples {¢, w} with v = —weVnW.
Denoting by | |[v and | |w the normsin V and W
we define the norms on Van'W and V 4+ W as follows:
(AL1) lwl¥aw = [ul¥ + [ulw,
(AL2) lul¥+w = min_[|el% + [»]%].
2y

It 1s immediately proved that the norm (AL.l) on VoW
is quadratic and makes Vn W into a Hilbert space. The
proof that V + W with the norm (AI2) is a Hilbert space
is less immediate; the shortest way to prove it is to take the
definition of V-+ W as the quotient space (V-+ W)/Z (as
done above) when V - W is made into a Hilbert space by
putting [ {¢, w}|? = ||¢|}¥ + |w|%. Then the quotient space
is identified with the orthogonal complement of Z and the
norm (AL.2) on V 4+ W is just the norm of V 4+ W restricted
to this complement.

The preceding definitions assign to each compatible Hilbert
couple [V, W] a quadruple of well determined Hilbert spaces
[V, W, VaW, V4+ W]. Even if V is contained in W,
when VaW =V and V4 W =W, these equalities only
mean equalities of spaces, but we still put norm (AL.1) on V
considered as Vn W and norm (AL2) on W considered
as V -+ W. In this way all that follows will be valid without
any exceptions.

Lemma. — Let % be a Hilbert space and V a Hilbert
subspace of #6. Then there exists a linear non-negative bounded
operator G on ¥ such that

10 For ue¥,GueV and (u, ¢)x = (Gu, ¢)y forall veV.

20 The null-space of G is 6OV (V is the closure of V in 6)

30 If G2 s the positive square root of G then GY2(#6) =V
and for feV, |flsw = | G*"f]v.

40 The upper bound of G = sup "vﬂ%ﬁ-

vev [o[¥

The operator G s unique. The so-established correspondence
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between Hilbert subspaces V of ¥ and the non-negative
bounded linear operators G is 1 — 1 and onto ().

Proof. — Since V 1s a Hilbert subspace of # we have
¢ = sup {|¢|3%/l¢|}:veV} < oo. Consequently the antilinear
functional (u, ¢)3 of ¢ which is bounded on # is, a fortiori,
bounded on V with its norm and hence realized in the
Hilbert space V as (Gu, ¢)y. This defines Gu uniquely as
an element of V. It is clear that G is linear. By putting
v =Gu we get (u, Gu) = (Gu, Gu)y > 0. Hence G is
non-negative. To see that it is bounded by ¢, write

|Gulfe < (Gu, Gu)y = c(u, Gu)n < cluls]Gul.

Thus, 1° 1s proved. 2° follows immediately from 1°.

To prove 39, notice first that the range of G is densein V
(in the norm of V). Otherwise there would exist ¢y, 0 # ¢, €V,
such that (u, ¢0) = (Gu, vo)vy=0 for all ue¥ which is
impossible. On the other hand, the range of any self-adjoint
operator is dense in the norm of # in the orthogonal comple-
ment of its null-space. Hence the elements f= G!2u are

dense in V, whereas the elements G!2f = Gu are dense in V
in the norm of V. By the formula (Gu, Gu)v = (u, Gu)x
we get (GYf, G'2f)y = (f, f)s%. Therefore the mapping
G!2 is a linear isometry of the range of G2 provided with
the norm of # into V provided with the norm of V. By
continuity it is extendable to an isometry of V onto V.
Finally, G2(36) = G2(V) = V.

To prove 4°, we use 3° and write
P ’

(u, Gu)z (G 2u, G12u)z (v, 9)76
sup ~—2F = = L=
uedb (u, u)% ueV (u7 u)% VEV (V7 V)V

= C.

To finish our proof it remains to show that if G 1is a linear
non-negative bounded operator on # then there exists a
unique Hilbert subspace V to which it corresponds. To this
effect we take the positive square root G'2; put V = G'2(36).
The orthogonal complement of the null-space of G is then V
and G2 restricted to V is 1 — 1 and onto. We put then

(*4) This lemma is well-known; the first version, not quite complete, was esta-
blished by K. Friedrichs [7]. We give the proof for completeness sake.
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for feV, |Gf|y = |fls. Then if we put for ¢eV,
p = G2f, feV, we have

(Gu, ¢)y = (G12G12u, Gi2f)y = (G2u, f)x
= (u, G®*f)z = (u, ¢)a

which shows that G corresponds to V. By part 3° of the
lemma there is no other possible choice of V and | [v.

Taeorem I. — 10 Let [V, W] be a compatible Hilbert
couple and G, H be the operators on V + W which, following
the Lemma, correspond to V and W respectively. Then
G+ H = 1 (udentity) and the operators corresponding to
VoW in V+W,V and W are GH, H restricted to V
and G resiricted to W respectively.

20 If, for two Hilbert subspaces V, W of a common Hilbert
space ¥ the corresponding operators G and H satisfy
G+ H=1 then %=V + W (*).

Proof. — 1° We use the intrinsic definition of a compatible
couple and the corresponding definition of V 4 W. We
denote by S the direct sum V -+ W. By V, and W, we
denote the subspaces of S of elements {¢, 0} and {0, w}
respectively. By ¢ and 7t we denote the canonical mappings
p— {0, 0}, w > {0, w}. Weput Z= {{u, —u}:ueVnW}
Z 1s a closed subspace of S and we put T = SOZ. ny, tw
and wp are the orthogonal projections in S on V,;, W,
and T respectively. We identify now ¢eV with w0
and we W with wptw. If ueVaW then

Trou — Ttu = mr{u, — u} = 0.

Hence the identifications are consistent with the coupling
of V and W which allows the identification of [V, W]
with [nroV, mptW]. With this identification V4 W==T
where T 1is taken with the norm of S. In view of the identi-
fication, ¢ and T may be considered as the inverses of =y
restricted to V, and W, respectively. Consider on T the
operators G and H corresponding to V = neV and
W = nptW. We claim that G = wnyny restricted to T and,

(*%) For Banach spaces A, B, A= B means that A and B are identical as
vector spaces and, moreover, have the same norms.
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similarly, H = myrw. It is enough to show this for G. In
fact, for teT and ¢eV, we have,

(mrmvt, ¢)v = (oTrTvt, o9)s = (Tvt, 60)s = (L, o¢)s
= (t, TtTO'V)s = (t, V)T.

This equation, valid for every ¢ in V, shows that nmyt = Gt.
It follows immediately that

Gt + Ht = wrnvt + mrnwt = wr(ny + w)t = et = ¢.

To prove that GH corresponds to VnW we notice
that for weV + W, GHu = G(I — G)u = HGu, hence
HGue VnW. Then, if e Vna W, we have

(HGu, 2)vaw = (GHu, 2)v + (HGu, 2)w

= (Hu, x)V+w + (Gu, J))v.,\_w == (u, .’1))V+w

which proves our assertion. To show that H corresponds to
VaW i V, take any veV and zeVnW. Then
¢ = G2f, z = G2g = H'?h where f and g are in V
and heW. We have Hy = HG?f = G'?Hfe VaW and

(Ho, z)yaw = (HGY2f, Gl2g)y 4+ (HG2f, H12h)w
= (Hf, glvew + (H2G2f, h)v,w
= (f’ g)V+W - (Gl/zﬂ w)V+W + (G1/2f; x)V+W = (", 37)"7

which shows that H restricted to V corresponds to VaW
in V. The assertion about the restriction of G to W 1is
proved similarly.

20 Since for ze ¥, GreV and HzeW, it follows that
=Gz + HzeV 4+ W. Hence, # as vector space is the
same as V ++ W. We still have to check the equality of norms.
Since V and W are Hilbert subspaces of % there exists a
¢ > 0 such that |¢|} > c|v|}% for veV and |[w|} > c|w|%
for we W. We have then

I2l¥+w = min {|¢o]|¥ + [wlWw: veV, weW, 2 =7v + w}
> cmin {|¢|} + |w|}: veV, weW, 2 =9 4 w}

> 5 lal3e ().

(*6) This follows from [z — w|2 + [w|2 = % =]z + 2”w—%’r



320 R. D. ADAMS, N. ARONSZAJN AND M. S. HANNA

The closed graph theorem then gives that there exists a
constant C such that [z|3,w < C|z|%. Therefore the scalar
product in V 4+ W 1is given by a bounded, positive operator
M with bounded inverse: (z, y)v.iw = (Mz, y)%. It follows
that the operator G’ corresponding to V in V4+ W by
our Lemma 1s given by

(G'z, o)v = (%, ¢)vew = (Mz, ¢)56 = (GMz, ¢)v.
Hence G’ = GM and similarly, H = HM and
G + H = (G + H)M.

Since G'+ H' =1 by 19 and G + H =1 by hypothesis,
M = I, which finishes the proof.

Consider now a fixed compatible Hilbert couple [V,, V]
and the corresponding operators G, and G; =1 — G, in
Vo + V,. It will be convenient to use the spectral decomposi-
tion E, of G, in the space V,+ V,. The spectrum is
contained in the closed interval 0 < A < 1. The null-space
N, of G, is the eigenspace corresponding to the eigenvalue 0
and the null-space N; of G; 1is the eigenspace for A = 1.
For any ueVy, 4+ V; we have

u= [dEu, Gitu= ("W dEu,
(AL3) GiPu = [*(1 —Ap2 dEu
GGy = ‘Al A2(1 — Q)2 dE,u
(AL4a) ueV, <> |ul}, = ﬂ ' A1d| Eyul? < oo
(AL&b) ueVy <= Jul¥, = /(1 — ) d|Euf? < oo
(AL4c) ueVynVy <= [ul?qgv,
= [IA(1 — V)| Eauf? < oo,
We have further
Ny Vo, Vo = (Vo + V1)ON,, Noe Vi,
(ALD) Vi = (Vo + V1)ON,
Von V, = (V, + V1)O(N, + Ny).

For every number 7,0 < 7= < 1, we define the interpolation
spaces V. between V, and V, as follows:

(AL6) V. usthe Hilbert subspace of V. + V; corresponding
to the operator G}—Gl.
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Clearly, for 1 =0 and © =1 the notation we started with
is consistent with this definition. Using the resolution of
identity E, we get an equivalent definition

(AL6') ueV, <> |u|?= ‘/0'1 A1 — A)~d| Eyul? < oo.
From (AIL.6') and (Al4c) it follows immediately that
(AL7) VonV,eV.cVynV; for 0 <7< 1.

By approximating ue V. by (E;_;, — Ey)u with n 7
we check that

(AL8) V¢nV, isdensein V. (in the norm of V.).
We remark next that for 0 < © < 1,
Vo = GE92Gi2(V, n Vy)
but for =0 or 1 we get

Vo = G§*(V, n V,) = orthogonal complement in
(AL9) Vo of Ny
V; = GI*(V, n V;) = orthogonal complement in

V, of N,.

Then by checking the norms as expressed in terms of the
resolution of identity E, one sees immediately that for any
real o, and o; the operator G{*G{* is defined on V,n 'V,
and 1s a unitary operator on all the following spaces provided
with their respective norms :

Von Vy with norm of Vo + Vi, Von'Vy, Vi, Vi, Vo for
0<t< 1.

If [W,, W;] is another compatible Hilbert couple we will
repeat the definitions, notations and constructions as above
except that the operators will now be denoted H, and
H, =1— H, and we will obtain the interpolation spaces
W..

We can now state the interpolation theorem.

Tueorem II (INTErRPOLATION THEOREM). — Let T be a
linear mapping of Vo + Vi into W, + W, such that it
transforms continuously V, into W, and V, into W,
with respective bounds My, and M;. Then

14
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1° T transforms continuously Vo + V, into W, + W,
with bound < max (M,, M,).

20 T transforms continuously VyonV; into Won W; with
bound < max (M,, M,).

3° T transforms continuously V. into W, 0 <1 < 1,
with bound < M{"Mj.

Proof. — 1°If u=uy + u;, uoeVy and u, € V;, then by
(AL2)
I Tuldv,+w, < min (| Tu,l%, + [ Tul%,) _
< max (M, Mi) min (Ju,l%, + [wl?.)
— max (MZ, M2)]ul%,vv,

20 If ueVynV;, Tue Won W; and by (AL1)
ITuldv,aw, = [ Tuliv, + 1Tult, < max (Mg, M})[ul3,qv,

30 Since in this part we are considering only V. with
0 <7 <1, we can restrict our consideration to V,n Vy,
a closed subspace of V, + V;. We will retain the notation
G,, G; for the restrictions of G, and G, to VyonV;. With
this convention for a > 0, G and G{ will have well-deter-
mined inverses Gy* and Gy* (they may be unbounded).
The transformation T maps V,nV; into W,n W,. Hence
Vo n 'V, is mapped into Wy n W;. Thus we can restrict our
considerations to W, n W;. The above remarks apply also
to H, and H, restricted to Wyn W;. We can now make
the following remark which is checked immediately by using
the spectral representation of our operators.

G{o2Gy? (or HF?H{2) is an operator valued function
of the complex variable { which is analytic in the uniform
operator topology for { =1 + t¢ intheopenstrip 0 <7 < 1
and is continuous in the strong operator topology in the closed
strip 0 < 7 < 1.

Consider now ¢e VynV,. Then G *2Gi{? e V,nV,,

T(GE22Gi20) e Wy n Wy, H;l’zH;”zT(Gf}’o’zGi’zv) eWon'W,
and also

HG+or Hi‘t’zT(Gf,l“OmGi’”v)
= H{zH{-D2H;1/2 H;1’2T(G§1“”2G§’2v) e W,nW,.
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Consequently the operator valued function
Hf,‘”"/‘-‘H;t’“T(Gf,‘“”zGi")

is analytic in 0 <t < 1 in the uniform operator topology
and continuousin 0 < 7 < 1 in the strong operator topology.

Therefore
w({) = M5IMpSHS IR HRT(GE-0RGY20)

is a vector valued function analytic in the open strip and
continuous in the closed strip.
For { = is(t = 0) this vector valued function becomes

w(ic) = MiF M H{"2H "2 Hy12T (G52 G2 GY%).
Hence

I (o)l wonw, = | Hg?w(io)|w, = Mg*| T(Gg "G Gg%) | w,
< [G%lv, = I¢lveav::

Similarly we prove that |[w(1 4 ic)|w;aw; < [¢|v;nv,. By the
maximum modulus theorem [6] for vector valued analytic
functions we get |[w({)|w;aw; < |¢[|v;av; for all T in the
strip. In particular for 0 < 7 < 1,

()| womw; = Mgt Mi| T(G§—2Gi2¢| w,
< 9lv;av, = | GE—2Gi2| ..

When ¢ varies over VynV,;, G{~2G]2¢ varies over a
dense subspace of V.. Hence the last inequality shows that T
is a bounded transformation of V. into W. with bound

1—t M~
< MM

Tueorewm III. — Let H be a linear positive bounded operator
on a Hilbert space %. Let W, be the Hilbert subspace of ¥
corresponding to the operator H2**, o« > 0. Then for any -,
0<t<1, and 0 < a< B, Woqoyp: s the t-th inter-
polation space by quadratic interpolation between W,

and Wp.

Proof. — Consider the subspace W’ corresponding to the
operator H2* 4 H2P. By using the spectral decomposition E,
of H we see that the elements ue W, are characterized by

lul¥, = f)x‘” d|E,u|® < o, and the elements ue W’ are
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characterized by |u|% =J (A2* 4 A26)1 d| Eyul? < . It
follows that W, < W’ and similarly, Wge W'. W, and W;
are then necessarily Hilbert subspaces of W’. Using the
expression of norms and scalar products in W, and W’ in
terms of the resolution of identity E; we check immediately
that the operator H, which corresponds to W, in W’

T A2
corresponds to multiplication by (& ne)’
the operator H2*(H2* + H2f)-1. Similarly the operator
H28(H2* 4 H26)=1 corresponds to Wz in W'. Since the sum
of these two operators is = [ it follows, by Theorem I, 20,
that W’ = W, 4 Wg. Hence the t-th interpolation space
between W, and Wpg corresponds to the operator on W’
which is H2e—+2fs(H2e 4 H2f)-1, Therefore this subspace
corresponds in # to the operator H21—9+287 35 is stated in
our theorem.

As application we give the following corollary.

ie. it 1s

Cororrary 3'. — For the space of potentials P*R") we
have that P*a—9+%(R") is the =-th interpolation space by
quadratic interpolation between P*R") and PEF(R").

Proof. — We have only to remind the reader that
P*(R") = G4(L?(R") where G, are positive bounded integral
operators on L2(R") which, in view of the convolution formula
G, * Gg = Gg.p, are necessarily the a-powers of Gy, i.e.
G, = G{. Since for fe L*R"), |Guf|e= = |fli= We recognize
that the spaces P*R") are Hilbert subspaces of L2(R")
corresponding to the operators Gy, = G3*. Hence the prece-
ding theorem applies.

Remark 1. — Some clarification should be given concerning
the last Corollary. The spaces P% R") as introduced in Ch. 11
are not exactly subspaces of L2(R"). The elements of L*(R")
are classes of equivalence rel. A, (i.e. relative to the sets of
Lebesgue measure 0), whereas the elements of P*(R") are
classes of equivalence relative to the corresponding class of
exceptional sets, the class Uy, ¢ A,. However, each class of
equivalence in L2#(R") has elements in common with at most
one class of equivalence in P*R") (and then the former
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contains the latter) and therefore we may identify the elements
of P*R") with elements of L2(R"). By virtue of this identi-
fication we can proceed as in the proof of the Corollary, but
then we obtain the interpolation space as a class of elements in
L2(R"). In other words we obtain, by Corollary 3, the class
P*a-9+5%(R") saturated rel. ,. To recapture the proper class
P*1—2+%(R") we have to apply the above identification in
reverse which can be obtained by correcting the function in the
class saturated rel. A,.

This situation may present itself in a more general case
when we deal with two saturated functional Hilbert spaces (%)
9 and 92 on a common basic set & relative to two excep-
tional classes ' and Y? respectively.

We first remind the reader that a saturated functional
Hilbert space F rel. U is, in the first place, a linear class of
functions defined on & with a quadratic pseudo-norm having
the property that |u| = 0 <= u(z) =0 exc. A. Since each
such class is a subspace of the linear class of all functions
defined on & we have a natural meaning for the classes
Fnd and F 4+ F2. We define then, by formulas (AIL1)
and (AL2) the pseudo-norms on F nJ® and F + F2. The
compatibility of the two functional spaces means that for no
function f*e 3 with [f*|gx # 0 one gets |f*|gigo=0
for k=1, 2. Thisis equivalent to the fact that if fe %' n 32,
then |f[g =0 <= |flg = 0. Assuming that the compati-
bility holds, we notice immediately that the class ' 4 32
is a functional Hilbert space rel.

A G YA = {(AluA?): Al e, A2 e 2}

and that ' n 3 is a functional Hilbert space rel. A n 2.
However, to apply the abstract interpolation here, we must
identify the elements of the Hilbert spaces 3, 3 and ' n 32,
i.e. the equivalence classes rel. A, A2 and A*n Y2 respec-
tively, with the equivalence classes rel. ' U ? containing
them, which are elements of the Hilbert space & 4 32,
This leads to interpolation spaces which are functional spaces
rel. A* U A2. However, we can give a more precise definition
of the interpolation spaces as functional spaces, proceeding

(") Similar developments can be made in case of functional Banach spaces.
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as follows. The functional space F nJ rel. Y n Y? is dense
in the interpolation space with its norm. Therefore the inter-
polation space is a functional completion of F nJ* relative
to the interpolation norm. Hence we can ask for the best pos-
sible completion, i.e. with the smallest possible exceptional
class. In particular, if there exists a perfect functional comple-
tion of 7 n J* rel. W n Y? with the interpolation norm on it,
we will call this the perfect functional interpolation space. Its
exceptional class will always be contained between ! n 92
and A U A2

In the case of the Corollary 3’, we recapture in this way the
interpolation space P*—>+%(R") with its proper exceptional
class 2[2a(1—‘t)+2ﬁr'

In order to state the next theorem in its strongest form we
recall a few facts about general interpolation methods between
Banach spaces (see [3]).

The notion of a compatible couple of Banach spaces [V, W]
and the definitions of Vn'W and V 4 W as Banach spaces
are similar to those given above for Hilbert spaces (except for
some differences in the definitions of norms of Vn W and
V 4+ W). For a compatible couple [V, W] we say that the
Banach space A is an intermediate space between V and W
if it is a Banach subspaceof V4+ W and VanWcAcV + W.
An intermediate space A 1s an interpolation space between V
and W if any linear operator T transforming V + W
into V+ W which transforms continuously V into V
and W into W, also transforms continuously A into A.

An interpolation method F defined on a class X of
Banach couples is a function which assigns to each couple
[V, W]e X an intermediate Banach space F[V, W] between
V and W (*¥) with the following property: if T 1s a linear
mapping of V,+ W, into V, 4+ W, for [V, W]eX,
t=20, 1, and if T transforms continuously V, into V,
and W, into W; then T transforms F[V,, W,] into
F[V;, W,] continuously.

One of the main results of [3] can be briefly stated as follows :

10 If F is an interpolation method on some class R of

(18) If F’ assigns the same spaces as F but with different (necessarily equi-
valent) norms, then F’ is considered different from F.
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Banach couples, then F[V, W] 1is an interpolation space
between V and W for any [V, W]eX.

20 If A 1is an interpolation space between V and W for
some compatible Banach couple [V, W], then there exist
general interpolation methods (**) which assign A to [V, W].

It is obvious now, in view of Theorem II, that for the class
A of compatible Hilbert couples, the assignment of V. to
[Vo, V;] forms an interpolation method and hence V. is an
interpolation space between V, and V;.

Tueorem IV. — Let E and E’ be two Hausdor{f topological
vector spaces and let T be a linear mapping of E onto E’
and S a linear mapping of E’ into E such that TS =1
(identity on E’). Suppose now that V and W are Banach
subspaces of E and that V' =T(V) and W' =T(W) are
Banach subspaces of E’ suchthat T transforms continuously V
onto V' and W onto W', and S transforms continuously
V' into V and W’ into W. Then if F is any interpolation
method defined for both couples [V, W] and [V', W'] we have
F[V, W] =T(F[V, W]) and S(F[V’, W])cF[V, W].

Proof. — By our hypothesis we have T(F[V, W]) < F[V’, W']
and S(F[V, W])cF[V, W]. Since TS=1 we get
F[V', W] cT(F[V, W]). Hence the statement of our theorem.

Remark 2. — In view of Theorem IV, if we consider any
general interpolation method which assigns to the couple
[V, W] a fixed interpolation space A between V and W,
this interpolation method will assign to the couple
[T(V), T(W)] the same space T(A) which, in particular,
must be an interpolation space between T(V) and T(W).
However, the norm on T(A) will depend on the interpolation
method.

We can apply Theorem IV to the following case. We take a
closed interval [y, 73], 0 < 74 < 73, and consider an open
subset D < R® with the simultaneous extension property
over this closed interval, 1.e. D e&([ty, 7,]) (see § 7, III).

We take as E the class P*(R"), and as E’, P%(D). The
simultaneous extension property means that there exists a

(*%) General in the sense that they are defined for all compatible Banach couples. -
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linear extension mapping S, S(E’) ¢ E such that it transforms
every P*D), 1, < @ < 7;, continuously into P%R") with a
uniform bound for all such «'s. By T we denote the restric-
tion mapping assigning to any function defined in R" its
restrictionto D. Evenif D isnotin a simultaneous extension
class we have always that T transforms P*R") continuously
into P¥D) (with a bound < 1). If De8([,, 7,]), and
since S is an extension mapping, it follows that TS = 1. Hence
T(P*R") = P¥D) for 7, < « < 7;. By taking in Theorem IV
V=P%R") and W =PHR" with 1, < « < B <7, and
applying Corollary 3’ we obtain the following corollary :

CoroLLARY &'. — The =-th interpolation space by quadratic
interpolation between P%D) and PD) is equal to 13“(1—7)+@7(D).
However, the interpolation norm is in general different from the
usual norm on P*1=9+5(D) (but the two norms are equivalent ).

Remark 3. — We can obtain the same space PY(D) by
quadratic interpolation between two different couples
[PD), PED)] and [P¥D), PF(D)] with « < y < B,
a' <y < fB’. For each couple we have to choose different
namely (Y — «)/( — «) and (y — &')/(B" — &’) respectively.
The two so obtained interpolation spaces will have equivalent
but different norms.

The next theorem is concerned with direct orthogonal sums.
If Vi are Hilbert spaces for ¢ belonging to a set of indices J
we denote by X LV’ the vector space formed by all systems

€J
{¢'}iey, '€V, such that |{¢'}|? =125 [¢1%: < oo. As is
€

well known this 1s a Hilbert space. Suppose now that for each
ieJ we have a compatible couple [Vi, W!]. We consider then

V= ZJlV‘ and W= ZJJ-W‘. The natural definition of
ie ie

VaW is the set of all systems {u'};cy with u'e Via W'
and the two norms |{v'}|v and |{u'}|w finite; one checks
immediately that [V, W] 1is a compatible Hilbert couple
and that VoW = 2L(Vian W) and V4 W = XL(Vi - W),

If G, and G;; are operators on V' + W! which corres-
pond to Vi and W{, then one verifies immediately that the
operators G, and G, on V 4 W corresponding to V
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and W respectively, are given by
Go{u'}iey = {Giot'}iens Gi{uw'}ies = {Gau'}ien

By using the definition (AI.6) we obtain then the following
theorem.

Taeorem V. — If [Vi, Vi], teJ, are compatible Hilbert
couples and Vi, 0 < © < 1, are the corresponding interpolation
spaces by quadratic interpolation, and if we write Vo = ZJ-LV:',,

ie
Vv, = ZJ-LVi then the corresponding interpolation space V.
ie 4
is obtained as V.= Y 1Vi

iel



APPENDIX II

Equivalence of metrics.

Let I be an n-dimensional C* manifold, g and g be
two C* metrics on . If T 1is a k-covariant (or contra-
variant) tensor on IR we shall write V;T(z) for the tensor
of the m-covariant derivatives of T and |T(z)|, for the
norm of T at 2, both computed with respect to g, and we
shall write g~ for the contravariant tensor associated with g.
A similar notation will be used for g. The eigenvalues of g
relative g will be designated by A;(z) < --- < A, (2).

In this appendix we will show that if the eigenvalues of g
relative g are bounded (above and below) and |Vj3(z)|,,
vy=1, ..., m, is bounded uniformly on IR, then the potential
norms |u|,m, and |u|,m; are equivalent. Furthermore we
shall explicitly display the dependence of the constants of
equivalence on these bounds.

We define for integers r:

1 for r=0,
(AIL1) Ny(g; g)(@) = | Max {(187(@)l|Vig(@)l,)™}

for r > 1.

For positive constants ¢ and ¢ we note (by using the fact
that V), =V, and the homogeneity of the norms) that
N.(cg; €8) = c2N(g; §). .

Our main theorems here are the following.

Taeorem I. — Forany zeIM and r > 1

)

(AIL2) |Viga)l; < Cont2hAy(a) N.(g; &)(=)
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and

(ATL2) N2 o) < Culol™ (28 (g Do

where C, depends only on r and C. = Max {C}"}.
V=1, «.0, I

Taeorem II. — If there are positive constants A, A, and
B, m=1, 2, ..., with 1< B, < B,y (and setting
B, =B, =1) such that A, < M(z) < -+ < A(2) < A,
and N,(g, g)(®) < B, forall xeI then for uePp (M), m
a non-negative integer,

(AIL3) |ulims < CPAY(1 4+ Ar™B2_i|ul2 m,,
and

(m—1)
(AIL3) [uf2 m ,< COAT™(1 + A7m) ( ‘}\l) B ult,ma

where C and C depend only on m.
The proofs of Theorems I and II are based on the following
lemma.

Lemma 1. — Let T be a k-covariant tensor on IR and
(U, h) a coordinate patch on M. If VT (x) ewists at x e h(U)
then

l(k+r) T

(AILE)  |V5T(@)l; < M(@) 277 3 eNi(gs 8)(@) V5 T(2)l,,

where ¢ =1 and ¢, s > 1, is a constant depending only
on r,k and s.

Proof of Theorem 1. — In (AIl.4) we set T = g and note
that |Vig(z)|,=n'? for r=0, and =0 for r > 0.
By an obvious computation (AII.2) now follows (cf. (AILb), 11)
and 111)).

From (AIL2) (and (AILD), 1) and 111)) we have

1)1 T5e@Na)™ < M) (Con 328 Nofes (o))

and (AIL2') is now clear.

Proof of Theorem 1I. — Let (U, h) be a coordmate patch

on M. Since the metric densities satisfy Vg(z) < A2V g(x),
(AIL3) is clear for m = 0.
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Now suppose m > 1 and Vju(z) exists at zeh(U)
1t exists exc. Asn(R(U)) on A(U)).

Since Vjyu(z) = V,u(z) we apply (AIL4) with T = V,u;
note that A (z)~ <1+ A™, 0 < s < m, and apply the
Cauchy-Schwarz inequality. Thus for 0 < r<m—1 we
have

r

Tt < (S a(, T, ) Nes )

§=0

% (sZ‘o r—s+ 1>]V;—‘+1u(x)|§>
<t + A 3 (7)1 3u(el3

§=0

where ¢, depends only on m. From this and the inequality
between the metric densities (AIL.3) follows for m > 1.

(AIL3') follows directly from (AIL.3) and (AIIL2’) by inter-
changing g and g and noting that

M7 <1+ AV <14+ A™ for 0<r<m—1,
Au(2)
Ay(2)
bounded above and below by A;! and A;! respectively.

> 1, and that the eigenvalues of g relative g are

Proof of Lemma 1. — We fix a coordinate patch (U, h)
and a point zeV = h(U). All tensors are transferred to V
and in what follows we do not need to mention z and V.
Let A and B be a- and b-covariant tensors and C a
c-contravariant tensor. Then AB will be the (a + b)-covariant
tensor formed by taking the product of A and B. If a > ¢
we shall use the symbol Co A for any of the covariant
tensors obtained by contraction of all the indices of C with
certain indices of A followed by some permutation of the
free indices. We remind the reader of a few well known facts :

(AIL5) 1) |AB|, = |AlglBlg, [CoAl, < [Cl Al
V(¢ B) = (V) » B + C o (VB),

i) AAl7 < |AlR < NUAlG, MICIE < ICIF < ACI3,

i) gl =[g7s = n.

Let 3]2% and 3}2% be the Riemann-Christoffel symbols
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of g and g, and ® = 3@5,,: Qi = gjlkg — %]2%% From the

usual formulae for covariant differentiation we have for a
k-covariant tensor T

AlIl6) V,T —V,T =R where R
( 9 g
k
=} 3 BT

with i,,,; the index of differentiation. We can also deduce
from (AII6) that ® is a tensor (cf. (AIL7)).

To determine an explicit expression for @, let g
be a component of V, 3, k the index of differentiation.

Then éijlk - g%j - gaj{g;c - éia{gc}y and Since vﬁA = O)
k

bAi s a A 5. fa A
0= bil — 8aj{ik}” — 8ia{%}". Thus
Ty
gijlk = gajq)?;c + giaq);"k-
Noting that ®} is symmetric in ¢ and ; we have by a
direct calculation

1 A A A A
(AILT7) o= 5 8 (81 + 8ujti — 8ijla)

and from the obvious symmetry in g and g
’ 1' .
(AILT)  — O = 5 &"(gi? + Zasit — ui2)

where g;;¢ 1s a component of V;g.
Then from (AIL6) we have

(AIL8) V,;T = V,T + % S+ gt [(V,8)T]

where the summation consists of 2k positive terms of the
form

Agh A
{8 BgilalikHTi. voei=aBitag .o i)
or

{éapéaik+i| i‘Ti, eee il—.pi‘+' . ik}

and k& negative terms of the form

{88 innaTis. . irBites.. in}-
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By noting that V;g' = 0, we have from (AIL.8) by an
easy induction on r,

(AILY) GT =T+ 33 = () (G (%9
- (V38) (Vr=2T)]
where the outer summation is taken over all systems
vy= (Vg ..., V), with v; > 1, Zvj <r,l=1,...,r and the

inner summation is taken over certam contractions of all the

indices of the 2l-contravariant tensor (g1)'=g1...g?
l-times
with the (2 + r + k)-covariant tensor (Vyg) ... (V}g)

(V=2%T) followed by a permutation of the free indices.
For each fixed system {v;} the number of terms in the inner
summation depends only on the system {v;}, r and k. Thus

(AIL10)
|V5Tl, < [ViTlg 4 X el g5 Vodl, - - - V58l VT,

<|VeTl, + 2 [22 oy 875l Vadl y- - -IAZ‘éIg]IAQ“TIg,
§S= Vj=8

where ¢y depends only on v, k and r and the inner summa-
tion is taken over all v= (v, ..., ), v; =2 1, 1=1, ..., r,

VI+...+vl.=S. . . .
If we consider any term in the inner summation then by

(AIL1)
ol gl Vi, - - - 1V58l,
= oy [(187, Vgl "] - . . [(187,IVygle) ™"
< o[ Max ((|&2IV72ln") ]
J=1 ..l
< o Ni(g; 8)-
Hence from (AI1.10), we have
(AILA11) |V3T|; < A2 V5T],
< A2 3 e Ny(g; 8)IV;Tl,

§=0

where ¢, =1 and ¢, = ) ¢, which depends only on &k,
Ev =s
r and s. This proves Lemma 1.
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Simultaneous extensions from subspaces of R".

Theorem 1b, § 8, II, gives a formula assigning to each
function u' e P*(-92(R¥) an extension ueP*R"). Theo-
rem 1c, § 8, II, gives a formula which assigns to a system of
functions {¢g, ¢;, ..., ¢.} defined on R*! a function
ue P*R" which has the functions ¢, as successive normal
derivatives on the hyperplane z, = 0. In this appendix we
state similar formulas which give maps which are simulta-
neous, i.e., such that the function w assigned to u’ (or to
{¥0s ¥1, .., ¥,}) does not depend on the potential class of
which u' (or each ¢,) is considered a member. The proofs are
omitted since they are slight variations of those in § 8, II.

Remark. — The maps defined by Theorems 1b and 1c are
simultaneous to some extent. Consider formula (8.3) of Theo-
rem 15 for some fixed a =ay, > (n— k)/2. If u' e P> -02(RFK),
(n —k)/2 < @ < a,, then the function u defined by (8.3)
belongs to P*R"),

|ul @, R S | u'| a—(n—k)/2, R%)

and ulge = u’. The simultaneity properties of formula (8.5)
of Theorem 1c were noted in Remark 2, § 8, II. However, the
maps defined by the theorems of this appendix are simulta-
neous for larger ranges of o.

Taeorem I. — Let ® be an integrable function on R**
such that

10 [kl @021 4+ [1"]2)* dn” < + © for all « > 0.
20 |k ®(n") dn” = 1.
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If v eP*92(RY (n— k)/2 < a, then the formula
(AIIL.1)

a(E) = (25020 (s ) (L 1)

defines a function ue P*R") such that

[ulz,re = (271)"""/1;»':(1 + 1) P(M")2 dn” | W] 5-a-rore, 5
and u|gx = u'.

Remark. — Formula (AIIIL.1) defines a bounded linear map
of H*-M2(R¥) into H*R") (**) for each real «, with the
property

(AIIL2) @) = (2m)t-me fL 4(F, &) dE" ae.

For a > (n — k)/2, (AIIL.2) implies that u’ is the restriction
of u. For « < (n—k)/2, R* is an exceptional set for a func-
tion u e P%R") and hence in general the restriction of such
a function is not defined.

An example of a function ® having the properties required
in Theorem I is:

D(n") = (2m)*—mg-aIT,

For this ® we can evaluate the bound of the map defined by
Theorem I explicitly. We have

(27)"* [rae (1 + 0712 D (0”2 dn”
= (W)Y ((n — K)[2, (n— k)2 + a+1; 1),

where Y(a, b; z) is the confluent hypergeometric function of
the second kind. Also, in the case « = (n — k)/2 (with this @)
it can be shown that the corrected function wu defined
by (AIIL1) is continuous for z” #0 and that, if
ug(z') = u(@’, z"), uy converges to u’ in L3*R¥) as 2"
approaches 0.

(%) For the definition of the spaces H%(R") see, for instance, Hérmander [8, p. 45].
For a > 0, H%(R®) is the space P%(R®) saturated relative to the class of sets of
measure zero.
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Tueorem II. — Let r be an integer > 0 and assume
0 <p<r Let {,.t) bean integrable function on R' such
that :

10 [ (1 + )44, ()2 dt < + o forall >0,
20 [ (i), (t)dt =3, for 0<g<r
If ¢ePa12(R*1) p + 1/2 < a, then the formula
(AIIL3)
a(3) = 2epnd (o ey (1 + [E10m0E)

defines a function ue P*R") such that

|ul% e = (25) [ (1 + )54y (D)2 dt [0]3-po1pp, o
and
oy

= 8¢ for  O0<g<r qg<a—1/2

R

The functions {,, can be chosen in various ways. For
example, let {,.(t) = iPe~ ", (1) where ¢,.(t) 1is the
polynomial of degree < r such that 20 holds.
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