On étudie ici les potentiels besseliens sur des variétés riemanniennes de classe bordées ou ouvertes. Soient : une variété -dimensionnelle et une sous-variété de de dimension . On donne des conditions suffisantes pour que : 1) la restriction à d’un potentiel sur soit un potentiel d’ordre sur ; 2) un potentiel d’ordre sur admette une extension à un potentiel d’ordre sur . On prouve aussi que pour une variété bordée la restriction à son intérieur est un isomorphisme isométrique entre l’espace des potentiels d’ordre sur , et l’espace des potentiels d’ordre sur .
In this paper Bessel potentials on -Riemannian manifolds (open or bordered) are studied. Let be an -dimensional manifold, and a submanifold of of dimension . Sufficient conditions are given for: 1) the restriction to of any potential of order on to be a potential of order on ; 2) any potential of order on to be extendable to a potential of order on . It is also proved that for a bordered manifold the restriction to its interior is an isometric isomorphism between the spaces of potentials of order on and respectively.
@article{AIF_1969__19_2_279_0, author = {Adams, Robert and Aronszajn, Nachman and Hanna, M. S.}, title = {Theory of {Bessel} potentials. {III:} {Potentials} on regular manifolds}, journal = {Annales de l'Institut Fourier}, pages = {279--338}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {19}, number = {2}, year = {1969}, doi = {10.5802/aif.328}, zbl = {0176.09902}, mrnumber = {54 #915}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.328/} }
TY - JOUR AU - Adams, Robert AU - Aronszajn, Nachman AU - Hanna, M. S. TI - Theory of Bessel potentials. III: Potentials on regular manifolds JO - Annales de l'Institut Fourier PY - 1969 SP - 279 EP - 338 VL - 19 IS - 2 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.328/ DO - 10.5802/aif.328 LA - en ID - AIF_1969__19_2_279_0 ER -
%0 Journal Article %A Adams, Robert %A Aronszajn, Nachman %A Hanna, M. S. %T Theory of Bessel potentials. III: Potentials on regular manifolds %J Annales de l'Institut Fourier %D 1969 %P 279-338 %V 19 %N 2 %I Institut Fourier %C Grenoble %U https://aif.centre-mersenne.org/articles/10.5802/aif.328/ %R 10.5802/aif.328 %G en %F AIF_1969__19_2_279_0
Adams, Robert; Aronszajn, Nachman; Hanna, M. S. Theory of Bessel potentials. III: Potentials on regular manifolds. Annales de l'Institut Fourier, Tome 19 (1969) no. 2, pp. 279-338. doi : 10.5802/aif.328. https://aif.centre-mersenne.org/articles/10.5802/aif.328/
[1] Theory of Bessel Potentials, Part II, Ann. Inst. Fourier, Vol. 17, Fasc. 2 (1967), 1-135. | Numdam | MR | Zbl
, and ,[2] Associated spaces, interpolation theorems and the regularity of solutions of differential problems, Proc. of Symposia in Pure Mathematics, Vol. IV, (1961), AMS. | Zbl
,[3] Interpolation spaces and interpolation methods, Ann. Mat. Pura Appl. Ser. IV, Vol. 68 (1965), 51-118. | Zbl
and ,[4] Theory of Bessel Potentials, Part I, Ann. Inst. Fourier, Vol. 11 (1961), 385-475. | Numdam | MR | Zbl
and ,[5] Intermediate spaces and interpolation, Studia Math. (Ser. Specjalna) Zeszyt 1 (1963), 31-34. | Zbl
,[6] Linear Operators, Vol. I, Interscience, New York, (1958). | MR | Zbl
and ,[7] Spektraltheorie halbbeschränkter Operatoren und Anwendung auf die Spektralzerlegung von Differentialoperatoren, Math. Ann. Vol. 109 (1934), 465-487, 685-713. Errata : Ibid. Vol. 110 (1935), 777-779. | JFM | Zbl
,[8] Linear Partial Differential Operators, Academic Press, New York, (1963).
,[9] Espaces intermédiaires entre espaces hilbertiens et applications, Bull. Math. Soc. Sci. Math. Phys. R.P. Roumaine, Bucharest 2 (50) (1958). | Zbl
,[10] Une construction d'espaces d'interpolations, C.R. Acad. Sci. Paris, 251 (1960), 1853-1855. | Zbl
,[11] The group of isometries of a Riemannian manifold, Ann. of Math. 40 (1939), 400-416. | JFM | Zbl
and ,[12] On the differentiability of isometries, Proc. Amer. Math. Soc. 8 (1957), 805-807. | Zbl
,Cité par Sources :