On the first restricted cohomology of a reductive Lie algebra and its Borel subalgebras
[Sur la première cohomologie restreinte d’une algèbre de Lie réductif et de ses sous-algèbres de Borel]
Annales de l'Institut Fourier, Tome 69 (2019) no. 3, pp. 1295-1308.

Soit k un corps algébriquement clos de charactéristique p>0 and soit G un groupe réductif connexe sur k. Soit B un sous-groupe de Borel de G et soit 𝔤 et 𝔟 les algèbres de Lie de G et B. Notons les premiers noyaux de Frobenius de G et B par G 1 et B 1 . De plus, notons les algèbres des fonctions régulières sur G et 𝔤 par k[G] et k[𝔤], et de même pour B et 𝔟. Le groupe G agit sur k[G] par conjugaison et sur k[𝔤] par l’action adjointe. De même, B agit sur k[B] par l’action de conjugaison et sur k[𝔟] par l’action adjointe. Nous montrons que, sous certaines hypothèses, les groupes de cohomologie H 1 (G 1 ,k[𝔤]), H 1 (B 1 ,k[𝔟]), H 1 (G 1 ,k[G]) et H 1 (B 1 ,k[B]) sont nuls. Nous étendons aussi nos résultats à la cohomologie pour les noyaux de Frobenius supérieurs.

Let k be an algebraically closed field of characteristic p>0 and let G be a connected reductive group over k. Let B be a Borel subgroup of G and let 𝔤 and 𝔟 be the Lie algebras of G and B. Denote the first Frobenius kernels of G and B by G 1 and B 1 . Furthermore, denote the algebras of regular functions on G and 𝔤 by k[G] and k[𝔤], and similarly for B and 𝔟. The group G acts on k[G] via the conjugation action and on k[𝔤] via the adjoint action. Similarly, B acts on k[B] via the conjugation action and on k[𝔟] via the adjoint action. We show that, under certain mild assumptions, the cohomology groups H 1 (G 1 ,k[𝔤]), H 1 (B 1 ,k[𝔟]), H 1 (G 1 ,k[G]) and H 1 (B 1 ,k[B]) are zero. We also extend all our results to the cohomology for the higher Frobenius kernels.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3271
Classification : 20G05, 20G10
Keywords: Cohomology, Frobenius kernel, reductive group
Mot clés : Cohomologie, noyau de Frobenius, groupe réductif

Tange, Rudolf 1

1 University of Leeds School of Mathematics LS2 9JT, Leeds (UK)
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AIF_2019__69_3_1295_0,
     author = {Tange, Rudolf},
     title = {On the first restricted cohomology of a reductive {Lie} algebra and its {Borel} subalgebras},
     journal = {Annales de l'Institut Fourier},
     pages = {1295--1308},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {69},
     number = {3},
     year = {2019},
     doi = {10.5802/aif.3271},
     zbl = {07067432},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3271/}
}
TY  - JOUR
AU  - Tange, Rudolf
TI  - On the first restricted cohomology of a reductive Lie algebra and its Borel subalgebras
JO  - Annales de l'Institut Fourier
PY  - 2019
SP  - 1295
EP  - 1308
VL  - 69
IS  - 3
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3271/
DO  - 10.5802/aif.3271
LA  - en
ID  - AIF_2019__69_3_1295_0
ER  - 
%0 Journal Article
%A Tange, Rudolf
%T On the first restricted cohomology of a reductive Lie algebra and its Borel subalgebras
%J Annales de l'Institut Fourier
%D 2019
%P 1295-1308
%V 69
%N 3
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3271/
%R 10.5802/aif.3271
%G en
%F AIF_2019__69_3_1295_0
Tange, Rudolf. On the first restricted cohomology of a reductive Lie algebra and its Borel subalgebras. Annales de l'Institut Fourier, Tome 69 (2019) no. 3, pp. 1295-1308. doi : 10.5802/aif.3271. https://aif.centre-mersenne.org/articles/10.5802/aif.3271/

[1] Andersen, Henning H.; Jantzen, Jens C. Cohomology of induced representations for algebraic groups, Math. Ann., Volume 269 (1984) no. 4, pp. 487-525 | DOI | MR | Zbl

[2] Bendel, Christopher P.; Nakano, Daniel K.; Pillen, Cornelius Extensions for Frobenius kernels, J. Algebra, Volume 272 (2004) no. 2, pp. 476-511 | DOI | MR | Zbl

[3] Borel, Armand Linear algebraic groups, Graduate Texts in Mathematics, 126, Springer, 1991, xii+288 pages | DOI | MR | Zbl

[4] Bourbaki, Nicolas Elements of Mathematics: Algebra II. Chapters 4–7, Springer, 1990, vii+461 pages (Translated from the French by P. M. Cohn and J. Howie) | MR | Zbl

[5] Demazure, Michel Invariants symétriques entiers des groupes de Weyl et torsion, Invent. Math., Volume 21 (1973), pp. 287-301 | DOI | MR | Zbl

[6] Donkin, Stephen On conjugating representations and adjoint representations of semisimple groups, Invent. Math., Volume 91 (1988) no. 1, pp. 137-145 | DOI | MR | Zbl

[7] Hochschild, Gerhard Cohomology of restricted Lie algebras, Am. J. Math., Volume 76 (1954), pp. 555-580 | DOI | MR | Zbl

[8] Humphreys, James E. Conjugacy classes in semisimple algebraic groups, Mathematical Surveys and Monographs, 43, American Mathematical Society, 1995, xviii+196 pages | MR | Zbl

[9] Jantzen, Jens C. First cohomology groups for classical Lie algebras, Representation theory of finite groups and finite-dimensional algebras (Bielefeld, 1991) (Progress in Mathematics), Volume 95, Birkhäuser, 1991, pp. 289-315 | DOI | MR | Zbl

[10] Jantzen, Jens C. Representations of Lie algebras in prime characteristic, Representation theories and algebraic geometry (Montreal, PQ, 1997) (NATO ASI Series. Series C. Mathematical and Physical Sciences), Volume 514, Kluwer Academic Publishers, 1998, pp. 185-235 (Notes by Iain Gordon) | DOI | MR | Zbl

[11] Jantzen, Jens C. Representations of algebraic groups, Mathematical Surveys and Monographs, 107, American Mathematical Society, 2003, xiv+576 pages | MR | Zbl

[12] Jantzen, Jens C. Nilpotent orbits in representation theory, Lie theory (Progress in Mathematics), Volume 228, Birkhäuser, 2004, pp. 1-211 | MR | Zbl

[13] van der Kallen, Wilberd Longest weight vectors and excellent filtrations, Math. Z., Volume 201 (1989) no. 1, pp. 19-31 | DOI | MR | Zbl

[14] Passman, Donald S. A course in ring theory, The Wadsworth & Brooks/Cole Mathematics Series, Wadsworth & Brooks/Cole Advanced Books & Software, 1991, x+306 pages | MR | Zbl

[15] Premet, Alexander; Stewart, David I. Rigid orbits and sheets in reductive Lie algebras over fields of prime characteristic, J. Inst. Math. Jussieu, Volume 17 (2018) no. 3, pp. 583-613 | DOI | MR | Zbl

[16] Richardson, Roger W. The conjugating representation of a semisimple group, Invent. Math., Volume 54 (1979) no. 3, pp. 229-245 | DOI | MR | Zbl

[17] Skryabin, Serge Invariants of finite group schemes, J. Lond. Math. Soc., Volume 65 (2002) no. 2, pp. 339-360 | DOI | MR | Zbl

[18] Springer, Tonny A. Linear algebraic groups, Progress in Mathematics, 9, Birkhäuser, 1998, xiv+334 pages | DOI | MR | Zbl

[19] Steinberg, Robert Regular elements of semisimple algebraic groups, Publ. Math., Inst. Hautes Étud. Sci. (1965) no. 25, pp. 49-80 | DOI | MR | Zbl

[20] Steinberg, Robert Torsion in reductive groups, Adv. Math., Volume 15 (1975), pp. 63-92 | DOI | MR | Zbl

Cité par Sources :