Soit un corps algébriquement clos de charactéristique and soit un groupe réductif connexe sur . Soit un sous-groupe de Borel de et soit et les algèbres de Lie de et . Notons les premiers noyaux de Frobenius de et par et . De plus, notons les algèbres des fonctions régulières sur et par et , et de même pour et . Le groupe agit sur par conjugaison et sur par l’action adjointe. De même, agit sur par l’action de conjugaison et sur par l’action adjointe. Nous montrons que, sous certaines hypothèses, les groupes de cohomologie , , et sont nuls. Nous étendons aussi nos résultats à la cohomologie pour les noyaux de Frobenius supérieurs.
Let be an algebraically closed field of characteristic and let be a connected reductive group over . Let be a Borel subgroup of and let and be the Lie algebras of and . Denote the first Frobenius kernels of and by and . Furthermore, denote the algebras of regular functions on and by and , and similarly for and . The group acts on via the conjugation action and on via the adjoint action. Similarly, acts on via the conjugation action and on via the adjoint action. We show that, under certain mild assumptions, the cohomology groups , , and are zero. We also extend all our results to the cohomology for the higher Frobenius kernels.
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3271
Keywords: Cohomology, Frobenius kernel, reductive group
Mot clés : Cohomologie, noyau de Frobenius, groupe réductif
Tange, Rudolf 1
@article{AIF_2019__69_3_1295_0, author = {Tange, Rudolf}, title = {On the first restricted cohomology of a reductive {Lie} algebra and its {Borel} subalgebras}, journal = {Annales de l'Institut Fourier}, pages = {1295--1308}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {69}, number = {3}, year = {2019}, doi = {10.5802/aif.3271}, zbl = {07067432}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3271/} }
TY - JOUR AU - Tange, Rudolf TI - On the first restricted cohomology of a reductive Lie algebra and its Borel subalgebras JO - Annales de l'Institut Fourier PY - 2019 SP - 1295 EP - 1308 VL - 69 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3271/ DO - 10.5802/aif.3271 LA - en ID - AIF_2019__69_3_1295_0 ER -
%0 Journal Article %A Tange, Rudolf %T On the first restricted cohomology of a reductive Lie algebra and its Borel subalgebras %J Annales de l'Institut Fourier %D 2019 %P 1295-1308 %V 69 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3271/ %R 10.5802/aif.3271 %G en %F AIF_2019__69_3_1295_0
Tange, Rudolf. On the first restricted cohomology of a reductive Lie algebra and its Borel subalgebras. Annales de l'Institut Fourier, Tome 69 (2019) no. 3, pp. 1295-1308. doi : 10.5802/aif.3271. https://aif.centre-mersenne.org/articles/10.5802/aif.3271/
[1] Cohomology of induced representations for algebraic groups, Math. Ann., Volume 269 (1984) no. 4, pp. 487-525 | DOI | MR | Zbl
[2] Extensions for Frobenius kernels, J. Algebra, Volume 272 (2004) no. 2, pp. 476-511 | DOI | MR | Zbl
[3] Linear algebraic groups, Graduate Texts in Mathematics, 126, Springer, 1991, xii+288 pages | DOI | MR | Zbl
[4] Elements of Mathematics: Algebra II. Chapters 4–7, Springer, 1990, vii+461 pages (Translated from the French by P. M. Cohn and J. Howie) | MR | Zbl
[5] Invariants symétriques entiers des groupes de Weyl et torsion, Invent. Math., Volume 21 (1973), pp. 287-301 | DOI | MR | Zbl
[6] On conjugating representations and adjoint representations of semisimple groups, Invent. Math., Volume 91 (1988) no. 1, pp. 137-145 | DOI | MR | Zbl
[7] Cohomology of restricted Lie algebras, Am. J. Math., Volume 76 (1954), pp. 555-580 | DOI | MR | Zbl
[8] Conjugacy classes in semisimple algebraic groups, Mathematical Surveys and Monographs, 43, American Mathematical Society, 1995, xviii+196 pages | MR | Zbl
[9] First cohomology groups for classical Lie algebras, Representation theory of finite groups and finite-dimensional algebras (Bielefeld, 1991) (Progress in Mathematics), Volume 95, Birkhäuser, 1991, pp. 289-315 | DOI | MR | Zbl
[10] Representations of Lie algebras in prime characteristic, Representation theories and algebraic geometry (Montreal, PQ, 1997) (NATO ASI Series. Series C. Mathematical and Physical Sciences), Volume 514, Kluwer Academic Publishers, 1998, pp. 185-235 (Notes by Iain Gordon) | DOI | MR | Zbl
[11] Representations of algebraic groups, Mathematical Surveys and Monographs, 107, American Mathematical Society, 2003, xiv+576 pages | MR | Zbl
[12] Nilpotent orbits in representation theory, Lie theory (Progress in Mathematics), Volume 228, Birkhäuser, 2004, pp. 1-211 | MR | Zbl
[13] Longest weight vectors and excellent filtrations, Math. Z., Volume 201 (1989) no. 1, pp. 19-31 | DOI | MR | Zbl
[14] A course in ring theory, The Wadsworth & Brooks/Cole Mathematics Series, Wadsworth & Brooks/Cole Advanced Books & Software, 1991, x+306 pages | MR | Zbl
[15] Rigid orbits and sheets in reductive Lie algebras over fields of prime characteristic, J. Inst. Math. Jussieu, Volume 17 (2018) no. 3, pp. 583-613 | DOI | MR | Zbl
[16] The conjugating representation of a semisimple group, Invent. Math., Volume 54 (1979) no. 3, pp. 229-245 | DOI | MR | Zbl
[17] Invariants of finite group schemes, J. Lond. Math. Soc., Volume 65 (2002) no. 2, pp. 339-360 | DOI | MR | Zbl
[18] Linear algebraic groups, Progress in Mathematics, 9, Birkhäuser, 1998, xiv+334 pages | DOI | MR | Zbl
[19] Regular elements of semisimple algebraic groups, Publ. Math., Inst. Hautes Étud. Sci. (1965) no. 25, pp. 49-80 | DOI | MR | Zbl
[20] Torsion in reductive groups, Adv. Math., Volume 15 (1975), pp. 63-92 | DOI | MR | Zbl
Cité par Sources :