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ON THE FIRST RESTRICTED COHOMOLOGY OF A
REDUCTIVE LIE ALGEBRA AND ITS BOREL

SUBALGEBRAS

by Rudolf TANGE (*)

Abstract. — Let k be an algebraically closed field of characteristic p > 0 and
let G be a connected reductive group over k. Let B be a Borel subgroup of G and
let g and b be the Lie algebras of G and B. Denote the first Frobenius kernels of
G and B by G1 and B1. Furthermore, denote the algebras of regular functions on
G and g by k[G] and k[g], and similarly for B and b. The group G acts on k[G]
via the conjugation action and on k[g] via the adjoint action. Similarly, B acts on
k[B] via the conjugation action and on k[b] via the adjoint action. We show that,
under certain mild assumptions, the cohomology groupsH1(G1, k[g]),H1(B1, k[b]),
H1(G1, k[G]) and H1(B1, k[B]) are zero. We also extend all our results to the
cohomology for the higher Frobenius kernels.
Résumé. — Soit k un corps algébriquement clos de charactéristique p > 0 and

soit G un groupe réductif connexe sur k. Soit B un sous-groupe de Borel de G et
soit g et b les algèbres de Lie de G et B. Notons les premiers noyaux de Frobenius
de G et B par G1 et B1. De plus, notons les algèbres des fonctions régulières sur
G et g par k[G] et k[g], et de même pour B et b. Le groupe G agit sur k[G] par
conjugaison et sur k[g] par l’action adjointe. De même, B agit sur k[B] par l’action
de conjugaison et sur k[b] par l’action adjointe. Nous montrons que, sous certaines
hypothèses, les groupes de cohomologie H1(G1, k[g]), H1(B1, k[b]), H1(G1, k[G])
et H1(B1, k[B]) sont nuls. Nous étendons aussi nos résultats à la cohomologie pour
les noyaux de Frobenius supérieurs.

Introduction

Let k be an algebraically closed field of characteristic p > 0, let G be a
connected reductive group over k, and let g be the Lie algebra of G. Recall
that g is a restricted Lie algebra: it has a p-th power map x 7→ x[p] : g→ g,
see [3, I.3.1]. In the case of G = GLn this is just the p-th matrix power. A
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g-module M is called restricted if (x[p])M = (xM )p for all x ∈M . Here xM
is the endomorphism of M representing x.
Recall that an element v of a g-moduleM is called a g-invariant if x·v = 0

for all x ∈ g. We denote the space of g-invariants in M by Mg. The right
derived functors of the left exact functor M 7→ Mg from the category of
restricted g-modules to the category of vector spaces over k are denoted by
Hi(G1, · ).

Let k[g] be the algebra of polynomial functions on g. If one is interested
in describing the algebra of invariants (k[g]/I)g for some g-stable ideal I
of k[g], then it is of interest to know if H1(G1, k[g]) = 0, because then we
have an exact sequence

k[g]g → (k[g]/I)g → H1(G1, I)→ 0

by the long exact cohomology sequence. So, in this case, (k[g]/I)g is built
up from the image of k[g]g in k[g]/I, and H1(G1, I).
The paper is organised as follows. In Section 1 we state some results

from the literature that we need to prove our main result. This includes a
description of the algebra of invariants k[g]G, the normality of the nilpotent
cone N , and some lemmas on graded modules over graded rings. In Sec-
tion 2 we prove Theorems 2.1 and 2.2 which state that, under certain mild
assumptions on p, H1(G1, k[g]) and H1(B1, k[b]) are zero. In Section 3 we
prove Theorems 3.1 and 3.2 which state that, under certain mild assump-
tions on p, H1(G1, k[G]) and H1(B1, k[B]) are zero. In Section 4 we extend
theses four theorems to the cohomology for the higher Frobenius kernels
Gr and Br, r > 2.

We briefly indicate some background to our results. For convenience we
only discuss the G-module k[g]. As is well-known, under certain mild as-
sumptions k[g] has a good filtration, see [6] or [11, II.4.22]. So a natural
first approach to prove that H1(G1, k[g]) = 0 would be that to show that
H1(G1,∇(λ)) = 0 for all induced modules ∇(λ) that show up in a good
filtration of k[g]. However, this isn’t true: even for p > h, h the Coxeter
number, one can easily deduce counterexamples from [1, Cor. 5.5] (or [11,
II.12.15]).(1) It is also easy to see that we cannot have Hi(G1, k[g]) = 0 for
all i > 0: the trivial module k is direct summand of k[g], and for p > h

we have H•(G1, k) ∼= k[N ] where the degrees of k[N ] are doubled, see [11,
II.12.14].
The idea of our proof that H1(G1, k[g]) = 0 is as follows. Noting that

H1(G1, k[g]) is a k[g]G-module, we interpret a certain localisation of

(1)This approach does work when proving (the well-known fact) that H1(G, k[g]) = 0.
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H1(G1, k[g]) as the cohomology group of the coordinate ring of the generic
fiber of the adjoint quotient map g→ g//G. It is easy to see that this coho-
mology group has to be zero, so we are left with showing that H1(G1, k[g])
is torsion-free over the invariants k[g]G. To prove the latter we use
Hochschild’s characterisation of the first restricted cohomology group and
a “Nakayama Lemma type result”. The ideas of the proofs of the other
main results are completely analogous.

1. Preliminaries

Throughout this paper k is an algebraically closed field of characteristic
p > 0. For the basics of representations of algebraic groups we refer to [11].

1.1. Restricted representations and restricted cohomology

Let G be a linear algebraic group over k with Lie algebra g. Let G1 be
the first Frobenius kernel of G (see [11, Ch. I.9]). It is an infinitesimal group
scheme with dim k[G1] = pdim(g). Its category of representations is equiva-
lent to the category of restricted representations of g, see the introduction.

Let M be an G1-module. By [7] (see also [11, I.9.19]) we have

(1.1) H1(G1,M)
= {restricted derivations : g→M}/{inner derivations of M}.

Here a derivation from g to M is a linear map D : g→M satisfying

D([x, y]) = x ·D(y)− y ·D(x)

for all x, y ∈ g. Such a derivation is called restricted if

D(x[p]) = (xM )p−1(D(x))

for all x ∈ g, where xM is the vector space endomorphism of M given
by the action of x, and −[p] denotes the p-th power map of g. An inner
derivation of M is a map x 7→ x · u : g → M for some u ∈ M . If M is
restricted, then every inner derivation is restricted. Clearly H1(G1,M) is
an G-module with trivial g-action: If D is a derivation and y ∈ g, then
[y,D] is the inner derivation given by D(y). Note also that H1(G1, k[g])
is a k[g]g-module, since the restricted derivations g → k[g] form a k[g]g-
module and the map f 7→ (x 7→ x ·f) from k[g] to the restricted derivations
g→ k[g] is k[g]g-linear.

TOME 69 (2019), FASCICULE 3
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1.2. Actions of restricted Lie algebras

Let g be a restricted Lie algebra over k. Following [17] we define an action
of g on an affine variety X over k to be a homomorphism g→ Derk(k[X])
of restricted Lie algebras, where Derk(k[X]) is the (restricted) Lie algebra
of k-linear derivations of k[X]. It is easy to see that this includes the case
that X is a restricted g-module. If g acts on X and x ∈ X, then we define
gx to be the stabiliser in g of the maximal ideal mx of k[X] corresponding
to x. In case X is a closed subvariety of a restricted g-module, then we
have gx = {y ∈ g | y · x = 0}.

Lemma 1.1. — Let g be a restricted Lie algebra over k acting on a nor-
mal affine variety X over k. If maxx∈X codimg gx = dimX, then k[X]g =
k[X]p.

Proof. — By [17, Thm. 5.2(5)] we have [k(X) : k(X)g] = pdim(X). By [4,
Cor. 3 to Thm. V.16.6.4] we have [k(X) : k(X)p] = pdim(X). So k(X)g =
k(X)p, since we always have ⊇. Clearly, k(X)p = Frac(k[X]p), k(X)g =
Frac(k[X]g) and k[X]g is integral over k[X]p. Since X is normal variety,
k[X]p ∼= k[X] is a normal ring. It follows that k[X]g = k[X]p. �

1.3. Two lemmas on graded rings and modules

We recall a version of the graded Nakayama lemma which follows from
[14, Ch. 13, Lem. 4, Ex. 3, Lem. 3].

Lemma 1.2 ([14, Ch. 13]). — Let R =
⊕

i>0 R
i be a positively graded

ring with R0 a field, let M be a positively graded R-module and let (xi)i∈I
be a family of homogeneous elements of M . Put R+ =

⊕
i>0 R

i.
(1) If the images of the xi in M/R+M span the vector space M/R+M

over R0, then the xi generate M .
(2) If M is projective and the images of the xi in M/R+M form an

R0-basis of M/R+M , then (xi)i∈I is an R-basis of M .

Lemma 1.3. — Let R be a positively graded ring with R0 a field and
let N be a positively graded R-module which is projective.

(1) Let M be a submodule of N with (R+N) ∩M ⊆ R+M . Then M
is free and a direct summand of N .

(2) LetM be a positively graded R-module, let ϕ : M → N be a graded
R-linear map and let ϕ : M/R+M → N/R+N be the induced R0-
linear map. Assume the canonical mapM →M/R+M maps Ker(ϕ)
onto Ker(ϕ). Then Im(ϕ) is free and a direct summand of N .

ANNALES DE L’INSTITUT FOURIER



FIRST RESTRICTED COHOMOLOGY 1299

Proof.
(1). — From the assumption it is immediate that the natural map

M/R+M → N/R+N is injective. Now choose an R0-basis (xi)i∈I of
M/R+M and extend it to a basis (xi)i∈I∪J of N/R+N . Let (xi)i∈I∪J
be a homogeneous lift of this basis to N . Then this is a basis of N by
Lemma 1.2(2). Furthermore, (xi)i∈I must span M by Lemma 1.2(2). So
M is (graded-) free and has the R-span of (xi)i∈J as a direct complement.
(2). — By (1) it suffices to show that (R+N)∩ Im(ϕ) ⊆ R+ Im(ϕ). Let

x ∈ M and assume that ϕ(x) ∈ R+N . Then x := x+ R+M ∈ Ker(ϕ). By
assumption there exists x1 ∈ Ker(ϕ) such that x = x1. Then x−x1 ∈ R+M

and ϕ(x) = ϕ(x− x1) ∈ R+ Im(ϕ). �

There is also an obvious version of Lemma 1.3 (and of course of Lem-
ma 1.2) for a local ring R: simply assume R local, omit the gradings every-
where and replace R+ by the maximal ideal of R.

1.4. The standard hypotheses and consequences

In the remainder of this paper G is a connected reductive group over k
and g is its Lie algebra. Recall that g is a restricted Lie algebra, see [3,
I.3.1], we denote its p-th power map by x 7→ x[p]. The group G acts on g

and the nilpotent cone N via the adjoint action and on G via conjugation,
and therefore it also acts on their algebras of regular functions: k[g], k[N ]
and k[G]. Fix a maximal torus T of G and let t be its Lie algebra. We
fix an Fp-structure on G for which T is defined and split over Fp. Then
g has an Fp-structure and t is Fp-defined. Denote the Fp-defined regular
functions on g and t by Fp[g] and Fp[t]. We will need the following standard
hypotheses, see [10, 6.3, 6.4] or [12, 2.6, 2.9]:
(H1) The derived group DG of G is simply connected,
(H2) p is good for G,
(H3) There exists a G-invariant non-degenerate bilinear form on g.

Put Gx = {g ∈ G | Ad(g)(x) = x} and gx = {y ∈ g | [y, x] = 0}. Assum-
ing (H1)–(H3) we have by [12, 2.9] that Lie(Gx) = gx for all x ∈ g. See
also [15, Sect. 2.1]. Put n = dim(T ). We call x ∈ g regular if dimGx (or
dim gx) equals n, the minimal value. Under assumptions (H1) and (H3)
we have that dα 6= 0 for all roots α, so restriction of functions defines
an isomorphism k[g]G ∼→ k[h]W , see [12, Prop. 7.12]. The set of regular
semisimple elements in g is the nonzero locus of the regular function frs on

TOME 69 (2019), FASCICULE 3



1300 Rudolf TANGE

g which corresponds under the above isomorphism to the product of the
differentials of the roots. Note that frs ∈ Fp[g]: frs is defined over Fp.

Under assumptions (H1)–(H3) it follows from work of Demazure [5] that
k[t]W is a polynomial algebra in n homogeneous elements defined over
Fp, see [10, 9.6 end of proof]. We denote the corresponding elements of
Fp[g] by s1, . . . , sn. Assuming (H1)–(H3) the vanishing ideal of N in k[g] is
generated by the si, see [12, 7.14], and all regular orbit closures are normal,
in particular N is normal, see [12, 8.5].

We call g ∈ G regular if Gg := {h ∈ G |hgh−1 = g} has dimension n, the
minimal value. Restriction of functions defines an isomorphism k[G]G ∼→
k[T ]W , see [19, 6.4]. The set of regular semisimple elements in G is the
nonzero locus of the regular function f ′rs on G which corresponds under the
above isomorphism to

∏
α a root(α−1). IfG is semisimple, simply connected,

then k[G]G is a polynomial algebra in the characters χ1, . . . , χn of the
irreducibleG-modules whose highest weights are the fundamental dominant
weights. Furthermore, the schematic fibers of the adjoint quotient G →
G//G are reduced and normal and they are regular orbit closures. See [19]
and [8, 4.24]. One can also deduce from (H1)–(H3) that Lie(Gg) = gg :=
{x ∈ g | Ad(g)(x) = x}.

2. The cohomology groups H1(G1, k[g]) and H1(B1, k[b])

Throughout this section we assume that hypotheses (H1)–(H3) from Sec-
tion 1.4 hold.

Theorem 2.1. — H1(G1, k[g]) = 0.

Proof. — Let K be an algebraic closure of the field of fractions of R :=
k[g]G. Since the action of g on k[g] is R-linear we have H1(G1, k[g]) =
H1((G1)R, k[g]

)
, where −R denotes base change from k to R, see [11,

I.1.10]. So, by the Universal Coefficient Theorem [11, Prop. I.4.18], we have

K ⊗R H1(G1, k[g]) = H1((G1)K ,K ⊗R k[g]
)

= H1((GK)1,K ⊗R k[g]
)
.

For i ∈ {1, . . . , n} denote the regular function on gK corresponding to
si ∈ k[g] by s̃i. Then K ⊗R k[g] = K[gK ]/(s̃1 − s1, . . . , s̃n − sn) = K[F ],
where F ⊆ gK is the fiber of the morphism

x 7→ (s̃1(x), . . . , s̃n(x)) : gK → AnK
over the point (s1, . . . , sn) ∈ AnK . Let frs ∈ Fp[g]∩ k[g]G be the polynomial
function from Section 1.4 with nonzero locus the set of regular semisim-
ple elements in g, and let f̃rs be the corresponding polynomial function on
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gK . Then we have for all x ∈ F that f̃rs(x) = frs 6= 0. So F consists of
regular semisimple elements. By [20, Lem. 3.7, Thm. 3.14] this means that
F = GK/S for some maximal torus S of GK . In particular, K[F ] is an in-
jective GK-module. But then it is also injective as a (GK)1-module, see [11,
Rem. I.4.12, Cor. I.5.13b)]. So K ⊗RH1(G1, k[g]) = Hi

(
(GK)1,K[F ]

)
= 0

for all i > 0.
So it now suffices to show that H1(G1, k[g]) has no R-torsion. We are

going to apply Lemma 1.3(2) to the R-linear map

ϕ = f 7→ (x 7→ x · f) : k[g]→ Homk(g, k[g]) .

Here the grading of Homk(g, k[g]) is given by

Homk(g, k[g])i = Homk(g, k[g]i).

As explained in [12, 7.13, 7.14] the conditions of [16, Prop. 10.1] are sat-
isfied under the assumptions (H1)–(H3), so k[g] is a free R-module. So
Homk(g, k[g]) is also a free R-module. We have k[g]/R+k[g] = k[N ], and

ϕ = f 7→ (x 7→ x · f) : k[N ]→ Homk(g, k[N ]).

By [12, 6.3,6.4], we have minx∈N dim gx = n and dimN = dim g − n. So
from Lemma 1.1 it is clear that the restriction map k[g]→ k[N ] maps the
g-invariants of k[g] onto those of k[N ]. But k[g]g = Ker(ϕ) and k[N ]g =
Ker(ϕ). So, by Lemma 1.3(2), Im(ϕ) is a direct R-module summand of
Homk(g, k[g]). In particular, Homk(g, k[g])/ Im(ϕ) is isomorphic to an R-
submodule of Homk(g, k[g]) and therefore R-torsion-free. From (1.1) in
Section 1.1 it is clear that H1(G1, k[g]) is isomorphic to an R-submodule
of Homk(g, k[g])/ Im(ϕ), so it is also R-torsion-free. �

Let B be a Borel subgroup of G containing T , let b be its Lie algebra
and let u be the Lie algebra of the unipotent radical U of B.

Theorem 2.2. — H1(B1, k[b]) = 0.

Proof. — Consider the restriction map k[b]B → k[t]. Under the assump-
tions (H1)–(H3) t contains elements which are regular in g. Furthermore,
the set of regular semisimple elements in g is open in g. So the regular
semisimple elements of g in b are dense in b. Since the union of the B-
conjugates of t is the set of all semisimple elements in b, by [3, Prop. 11.8],
it is also dense in b. This shows that the map k[b]B → k[t] is injective.
Furthermore, Ad(g)(x)− x ∈ u for all g ∈ B and x ∈ b by [3, Prop. 3.17],
since DB ⊆ U . So if we extend f ∈ k[t] to a regular function f on b by
f(x + y) = f(x) for all x ∈ t and y ∈ u, then f ∈ k[b]B . So the map

TOME 69 (2019), FASCICULE 3
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k[b]B → k[t] is surjective, that is, restriction of functions defines an iso-
morphism

k[b]B ∼→ k[t] .
Extend a basis of t∗ to (linear) functions ξ1, . . . , ξn on b in the manner indi-
cated above. Then these functions are algebraically independent generators
of k[b]B , and k[b] is a free k[b]B-module. Clearly, the vanishing ideal of u in
k[b] is generated by the ξi. Furthermore, minx∈u dim bx = n, see [12, 6.8].
We can now follow the same arguments as in the proof of Theorem 2.1.
Just replace G, g, N , k[g]G and the si by B, b, u, k[b]B and the ξi, and
replace frs by its restriction to b. �

Remark 2.3. — We have k[N ] = indGB k[u]. Using [11, Lem. II.12.12a)]
and the arguments from [11, II.12.2] it follows that H1(G1, k[N ]) =
indGB H1(B1, k[u]). From this one can easily deduce examples with
H1(G1, k[N ]) 6= 0.

3. The cohomology groups H1(G1, k[G]) and H1(B1, k[B])

Assume first that G = GLn. Put R = k[g]G and R1 = R[det−1]. Then,
using the fact that the g-action on k[G] is R1-linear, the Universal Coeffi-
cient Theorem and Theorem 2.1, we obtain

H1(G1, k[G]) = H1((G1)R1 , k[G]
)

= R1 ⊗R H1((G1)R, k[g]
)

= R1 ⊗R H1(G1, k[g]) = 0 .

Similarly, we obtain H1(B1, k[B]) = 0.
To prove our result for the case of arbitrary reductive G we assume in

this section the following:
There exists a central (see [3, 22.3]) surjective morphism ψ : G̃ → G

where G̃ is a direct product of groups of the following types:
(1) a simply connected simple algebraic group of type 6= A for which p

is good,
(2) SLm for p - m,
(3) GLm,
(4) a torus.

Theorem 3.1. — H1(G1, k[G]) = 0.

Proof. — First we reduce to the case that G is of one of the above four
types. Let ψ : G̃ → G be as above. Then G is the quotient of G̃ by
a (schematic) central diagonalisable closed subgroup scheme Z̃, see [11,

ANNALES DE L’INSTITUT FOURIER
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II.1.18]. Let N be the image of G̃1 in G1. Then N is normal in G1 and G1/N

is diagonalisable. So Hi(G1, k[G]) = Hi(N, k[G])G1/N , by [11, I.6.9(3)].
Furthermore,Hi(N, k[G]) = Hi(G̃1, k[G]), by [11, I.6.8(3)], since the kernel
of G̃1 → N is central.

The group scheme Z̃ also acts via the right multiplication action on k[G̃]
and this action commutes with the conjugation action of G̃. So k[G] =
k[G̃]Z̃ is a direct G̃-module summand of k[G̃]. So it suffices to show that
H1(G̃1, k[G̃]) = 0. By the Künneth Theorem we may now assume that G
is of one of the above four types.
For G a torus the assertion is obvious, and for G = GLn we have al-

ready proved the assertion. Now assume that G is of type (1) or (2). Then
G satisfies (H1)–(H3) and G is simply connected simple. By [20, 2.15] the
centraliser of a semisimple group element is connected, so when the element
is also regular, its centraliser is a maximal torus. As in the proof of Theo-
rem 2.1 we are now reduced to showing that H1(G1, k[G]) has no torsion
over R := k[G]G.
For this it is enough that Rm⊗RH1(G1, k[G]) = H1(G1, Rm⊗Rk[G]) has

no torsion over Rm for all maximal ideals m of R. By [19, 6.11, 7.16, 8.1]
the conditions of [16, Prop. 10.1] are satisfied, so k[G] is a free R-module
and k[G]m = Rm ⊗R k[G] is a free Rm-module for all maximal ideals m of
R. Furthermore, k[G]m/mmk[G]m = k[G]/mk[G] is the coordinate ring of a
fiber F of the adjoint quotient map. We know F is normal of codimension
n, and a regular orbit closure, so k[F ]g = k[F ]p by Lemma 1.1. By the
local version of Lemma 1.3 the Rm-linear map ϕ = f 7→ (x 7→ x · f) :
k[G]m → Homk(g, k[G]m) we now get that H1(G1, Rm ⊗R k[G]) has no
Rm-torsion. �

Let B be a Borel subgroup of G.

Theorem 3.2. — H1(B1, k[B]) = 0.

Proof. — This follows by modifying the proof of Theorem 3.1 in the
same way as the proof of Theorem 2.1 was modified to obtain the proof of
Theorem 2.2. �

Remark 3.3. — One can also prove Theorem 3.2 assuming (H1)–(H3).
The point is that it is obvious that restriction of functions always defines
an isomorphism k[B]B ∼→ k[T ].

Remark 3.4. — We briefly discuss the B-cohomology of k[B] and k[b].
From [13, Thm. 1.13, Thm. 1.7(a)(ii)] it is immediate that Hi(B, k[B]) = 0
for all i > 0. Now assume that there exists a central surjective morphism
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ψ : G → G where G̃ is a direct product of groups of the types (1)–(4)
mentioned before, except that for type (2) we drop the condition on p.
Then we deduce from the arguments from the proof of [1, Prop. 4.4] that
Hi(B, k[b]) = 0 for all i > 0 as follows. First we reduce as in the proof of
Theorem 3.1 to the case that G is simple of type (1) or (2) and then we
deal with type (2) as in [1]. Now assume G is of type (1) and let I be the
vanishing ideal of B in k[G]. As in [1] write

(3.1) m = M ⊕m2

where m is the vanishing ideal in k[G] of the unit element of G andM ∼= g∗

as G-modules. It suffices to show that I = I ∩ M + I ∩ m2, since then
we get a decomposition analogous to (3.1) for k[B] and we can finish as
in [1]. Let f ∈ I. Then the M -component of f correspond to df ∈ g∗ which
vanishes on b. This means it corresponds under the trace form of the chosen
representation ρ : G→ V (the adjoint representation for exceptional types)
to an element x ∈ u. So theM -component of f is g 7→ tr

(
ρ(g)dρ(x)

)
which

vanishes on B. But then the m2-component of f must also vanish on B.

4. The cohomology groups for the higher Frobenius
kernels

In this section we will generalise the results from the previous two sections
to all Frobenius kernels Gr, r > 1.

Lemma 4.1. — Let G be a linear algebraic group over k acting on
a normal affine variety X over k. If maxx∈X codimg gx = dimX, then
k[X]Gr = k[X]pr for all integers r > 1.

Proof. — Since codimg gx 6 codimGGx 6 dim(X) and maxx∈X
codimg gx = dimX we must have that for x ∈ X with codimg gx = dimX

the schematic centraliser of x in G is reduced. So (Gr)x = (Gx)r and

(Gr : (Gr)x) := dim(k[Gr])/ dim(k[(Gr)x])

= pr dim(G)/pr dim(Gx) = pr dim(X).

By [17, Thm. 2.1(5)] we get [k(X) : k(X)Gr ] = pr dim(X). By [4, Cor. 3 to
Thm. V.16.6.4] and the tower law we have [k(X) : k(X)pr ] = pr dim(X). So
k(X)Gr = k(X)pr , since we always have⊇. Clearly, k(X)pr = Frac(k[X]pr ),
k(X)Gr = Frac(k[X]Gr ) and k[X]Gr is integral over k[X]pr . Since X is
normal variety, k[X]pr ∼= k[X] is a normal ring. It follows that k[X]Gr =
k[X]pr . �
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Theorem 4.2. — Let r be an integer > 1.
(1) Under the assumptions of Section 2 we have

H1(Gr, k[g]) = 0 and H1(Br, k[b]) = 0.

(2) Under the assumptions of Section 3 we have

H1(Gr, k[G]) = 0 and H1(Br, k[B]) = 0.

Proof.
(1). — Let (H,M) be the group and module in question, i.e. (G, k[g]) or

(B, k[b]). Put R = k[h]H . Let ϕ be the first map in the Hochschild complex
of the Hr-module M , see [11, I.4.14]:

ϕ = f 7→ (∆M (f)− 1⊗ f) : M → k[Hr]⊗M.

Then the induced map ϕ : M/R+M → k[Hr]⊗ (M/R+M) is the first map
in the Hochschild complex of the Hr-module M/R+M which is k[N ] or
k[u]. So Ker(ϕ) = MHr and Ker(ϕ) = (M/R+M)Hr . Now the proof is the
same as that of the corresponding result in Section 2, except that we work
with the above map ϕ and instead of Lemma 1.1 we apply Lemma 4.1.

(2). — Let (H,M) be the group and module in question, i.e. (G, k[G])
or (B, k[B]). As in the proof of the corresponding result in Section 3 we
reduce to the case that G is simple of type (1) or (2). Put R = k[H]H .
Fix a maximal ideal m of R. Let ϕ be the first map in the Hochschild
complex of the Hr-module Mm. Then the induced map ϕ : Mm/mmMm →
k[Hr]⊗Mm/mmMm is the first map in the Hochschild complex of the Hr-
module Mm/mmMm = M/mM which is the coordinate ring of the fiber
of H → H//H over the point m. So Ker(ϕ) = (Mm)Hr and Ker(ϕ) =
(M/mM)Hr . Now the proof is the same as that of the corresponding result
in Section 3, except that we work with the above map ϕ and instead of
Lemma 1.1 we apply Lemma 4.1. �

Remark 4.3. — For G classical with natural module V = kn we consider
the cohomology groups H1(Gr, SiV ) and H1(Gr, Si(V ∗)).
Results about these modules can mostly easily be deduced from results on

induced modules in the literature. For induced modules one can reduce to
Br-cohomology using the following result of Andersen–Jantzen for general
G. Let B be a Borel subgroup of G with unipotent radical U and let T be
a maximal torus of B. For λ ∈ X(T ), the character group of T , we denote
by ∇(λ), the G-module induced from the 1-dimensional B-module given
by λ. We call the roots of T in the opposite Borel subgroup B+ positive.
By [11, II.12.2] we have for λ dominant
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(4.1) H1(Gr,∇(λ))[−r] ∼= indGB(H1(Br, λ)[−r]).

Below we will always take λ = $1 the first non-constant diagonal matrix
coordinate. First take G = GLn. Let B and T be the lower triangular ma-
trices and the diagonal matrices. Then the character group X(T ) of T iden-
tifies with Zn. Let ε1 be the first standard basis element of X(T ), i.e. the
character D 7→ Dii. Then SiV = ∇(iε1) and Si(V ∗) = ∇(−iεn). Replacing
u∗[s] by λ⊗ u∗[s] for λ = iε1 or λ = −iεn in the proof of [11, Lem. II.12.1]
and using (4.1) we obtain H1(Gr, SiV ) = H1(Gr, Si(V ∗)) = 0.
Now take G = SLn. Then SiV = ∇(i$1) and Si(V ∗) = ∇(i$n−1), where

$j denotes the j-th fundamental dominant weight. From [2, Cor. 3.2(a)]
we easily deduce that H1(Gr, SiV ) 6= 0 if and only if H1(Gr, Si(V ∗)) 6= 0
if and only if n = 2 and pr | i+ 2ps for some s ∈ {0, . . . , r − 1}, or n = 3,
p = 2 and 2r | i− 2r−1.

For G = Spn, n > 4 even, we deduce using Si(V ) = ∇(i$1) and [2,
Cor. 3.2(a)] that H1(Gr, SiV ) 6= 0 if and only if p = 2 and i is odd.
Now let G be the special orthogonal group SOn, n > 4, as defined

in [18, Ex. 7.4.7(3), (4), (6), (7)] (when p = 2 this is an abuse of nota-
tion). Note that V ∼= V ∗ unless n is odd and p = 2. Although the simply
connected cover G̃ → G need not be separable, it still follows from [11,
I.6.8(3), I.6.9(3)] that H1(Gr,M) = H1(G̃r,M)Tr for any G-module M ,
and H1(Br,M) = H1(B̃r,M)Tr for any B-module M . So one has to pick
out the weight spaces of the weights in prX(T ) ⊆ prX(T̃ ). For n > 8
it follows from [2, Cor. 3.2(a)] that H1(G̃r,∇(i$1)) = 0 for all i > 0.
For general n > 4 we proceed as follows. From [2, Sect. 2.5–2.7] we de-
duce that all weights of H1(Br, i$1) are of the form i$1 + psα for some
s ∈ {0, . . . , r − 1} and some α simple or “long” (i.e. there is a shorter
root). Since such weights don’t occur in prX(T ) for SOn, n > 4, we
get that H1(Br, i$1) = 0, and therefore by (4.1) H1(Gr,∇(i$1)) = 0
for all i > 0. By [11, II.2.17,18] Si(V ∗) has a filtration with sections
∇(i$1),∇((i− 2)$1), . . .. So H1(Gr, Si(V ∗)) = 0 for all i > 0.
The fact that the weights of H1(Br, i$1) have the form stated above

can been seen more directly as follows. First one observes that 1-cocyles
in the Hochschild complex of a Ur-module M can be seen as the linear
maps D : Dist+(Ur) → M with D(ab) = aD(b) for all a ∈ Dist(Ur) and
b ∈ Dist+(Ur). Here Dist+(Ur) denotes the distributions without constant
term, i.e. the distributions a with a(1) = 0. Then one shows that, outside
type G2, Dist(Ur) is generated by the Dist(U−α,r) with α simple or long.(2)

(2) If p is not special in the sense of [9], then (also in type G2) Dist(Ur) is generated by
the Dist(U−α,r) with α simple.
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It follows thatH1(Ur,M) is a subquotient ofM⊗
⊕

α, 06s<r u
∗[s]
−α , the α sim-

ple or long. Now use that, forM a Br-module, H1(Br,M) = H1(Ur,M)Tr .

BIBLIOGRAPHY

[1] H. H. Andersen & J. C. Jantzen, “Cohomology of induced representations for
algebraic groups”, Math. Ann. 269 (1984), no. 4, p. 487-525.

[2] C. P. Bendel, D. K. Nakano & C. Pillen, “Extensions for Frobenius kernels”,
J. Algebra 272 (2004), no. 2, p. 476-511.

[3] A. Borel, Linear algebraic groups, second ed., Graduate Texts in Mathematics,
vol. 126, Springer, 1991, xii+288 pages.

[4] N. Bourbaki, Elements of Mathematics: Algebra II. Chapters 4–7, Springer, 1990,
Translated from the French by P. M. Cohn and J. Howie, vii+461 pages.

[5] M. Demazure, “Invariants symétriques entiers des groupes de Weyl et torsion”,
Invent. Math. 21 (1973), p. 287-301.

[6] S. Donkin, “On conjugating representations and adjoint representations of semisim-
ple groups”, Invent. Math. 91 (1988), no. 1, p. 137-145.

[7] G. Hochschild, “Cohomology of restricted Lie algebras”, Am. J. Math. 76 (1954),
p. 555-580.

[8] J. E. Humphreys, Conjugacy classes in semisimple algebraic groups, Mathemat-
ical Surveys and Monographs, vol. 43, American Mathematical Society, 1995,
xviii+196 pages.

[9] J. C. Jantzen, “First cohomology groups for classical Lie algebras”, in Repre-
sentation theory of finite groups and finite-dimensional algebras (Bielefeld, 1991),
Progress in Mathematics, vol. 95, Birkhäuser, 1991, p. 289-315.

[10] ———, “Representations of Lie algebras in prime characteristic”, in Representation
theories and algebraic geometry (Montreal, PQ, 1997), NATO ASI Series. Series C.
Mathematical and Physical Sciences, vol. 514, Kluwer Academic Publishers, 1998,
Notes by Iain Gordon, p. 185-235.

[11] ———, Representations of algebraic groups, second ed., Mathematical Surveys and
Monographs, vol. 107, American Mathematical Society, 2003, xiv+576 pages.

[12] ———, “Nilpotent orbits in representation theory”, in Lie theory, Progress in
Mathematics, vol. 228, Birkhäuser, 2004, p. 1-211.

[13] W. van der Kallen, “Longest weight vectors and excellent filtrations”, Math. Z.
201 (1989), no. 1, p. 19-31.

[14] D. S. Passman, A course in ring theory, The Wadsworth & Brooks/Cole Math-
ematics Series, Wadsworth & Brooks/Cole Advanced Books & Software, 1991,
x+306 pages.

[15] A. Premet & D. I. Stewart, “Rigid orbits and sheets in reductive Lie algebras over
fields of prime characteristic”, J. Inst. Math. Jussieu 17 (2018), no. 3, p. 583-613.

[16] R. W. Richardson, “The conjugating representation of a semisimple group”, In-
vent. Math. 54 (1979), no. 3, p. 229-245.

[17] S. Skryabin, “Invariants of finite group schemes”, J. Lond. Math. Soc. 65 (2002),
no. 2, p. 339-360.

[18] T. A. Springer, Linear algebraic groups, second ed., Progress in Mathematics,
vol. 9, Birkhäuser, 1998, xiv+334 pages.

[19] R. Steinberg, “Regular elements of semisimple algebraic groups”, Publ. Math.,
Inst. Hautes Étud. Sci. (1965), no. 25, p. 49-80.

[20] ———, “Torsion in reductive groups”, Adv. Math. 15 (1975), p. 63-92.

TOME 69 (2019), FASCICULE 3



1308 Rudolf TANGE

Manuscrit reçu le 19 février 2018,
révisé le 28 avril 2018,
accepté le 12 juin 2018.

Rudolf TANGE
University of Leeds
School of Mathematics
LS2 9JT, Leeds (UK)
R.H.Tange@leeds.ac.uk

ANNALES DE L’INSTITUT FOURIER

mailto:R.H.Tange@leeds.ac.uk

	Introduction
	1. Preliminaries
	1.1. Restricted representations and restricted cohomology
	1.2. Actions of restricted Lie algebras
	1.3. Two lemmas on graded rings and modules
	1.4. The standard hypotheses and consequences

	2. The cohomology groups H1(G1,k[g]) and H1(B1,k[b])
	3. The cohomology groups H1(G1,k[G]) and H1(B1,k[B])
	4. The cohomology groups for the higher Frobenius kernels
	Bibliography

