Growth of the Weil–Petersson inradius of moduli space
Annales de l'Institut Fourier, Volume 69 (2019) no. 3, pp. 1309-1346.

In this paper we study the systole function along Weil–Petersson geodesics. We show that the square root of the systole function is uniformly Lipschitz on Teichmüller space endowed with the Weil–Petersson metric. As an application, we study the growth of the Weil–Petersson inradius of moduli space of Riemann surfaces of genus g with n punctures as a function of g and n. We show that the Weil–Petersson inradius is comparable to lng with respect to g, and is comparable to 1 with respect to n.

Moreover, we also study the asymptotic behavior, as g goes to infinity, of the Weil–Petersson volumes of geodesic balls of finite radii in Teichmüller space. We show that they behave like o((1 g) (3-ϵ)g ) as g, where ϵ>0 is arbitrary.

Dans cet article, nous étudions la fonction systole le long des géodésiques de la métrique de Weil–Petersson. Nous montrons que la racine carrée de la systole est uniformément Lipschitz sur l’espace de Teichmüller muni de la métrique de Weil–Petersson. Comme application, nous étudions la croissance du rayon de la plus grande boule métrique inscrite dans l’espace des modules des surfaces de Riemann de genre g avec n piqûres en fonction de g et n. Nous montrons que ce rayon est comparable à lng par rapport à g, et comparable à 1 par rapport à n.

De plus, nous étudions aussi le comportement asymptotique, lorsque g tends vers l’infini, des volumes de Weil–Petersson des boules géodésiques de rayons finis dans l’espace Teichmüller. Nous montrons qu’ils se comportent comme o((1 g) (3-ϵ)g ) quand g, où ϵ>0 est arbitraire.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/aif.3272
Classification: 32G15, 30F60
Keywords: The moduli space, Weil–Petersson metric, inradius, large genus, systole
Mot clés : L’espace de modules, métrique de Weil–Petersson, rayon, grand genre, systole
Wu, Yunhui 1

1 Yau Mathematical Sciences Center Tsinghua University Beijing, 100084 (China)
License: CC-BY-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AIF_2019__69_3_1309_0,
     author = {Wu, Yunhui},
     title = {Growth of the {Weil{\textendash}Petersson} inradius of moduli space},
     journal = {Annales de l'Institut Fourier},
     pages = {1309--1346},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {69},
     number = {3},
     year = {2019},
     doi = {10.5802/aif.3272},
     zbl = {07067433},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3272/}
}
TY  - JOUR
AU  - Wu, Yunhui
TI  - Growth of the Weil–Petersson inradius of moduli space
JO  - Annales de l'Institut Fourier
PY  - 2019
SP  - 1309
EP  - 1346
VL  - 69
IS  - 3
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3272/
DO  - 10.5802/aif.3272
LA  - en
ID  - AIF_2019__69_3_1309_0
ER  - 
%0 Journal Article
%A Wu, Yunhui
%T Growth of the Weil–Petersson inradius of moduli space
%J Annales de l'Institut Fourier
%D 2019
%P 1309-1346
%V 69
%N 3
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3272/
%R 10.5802/aif.3272
%G en
%F AIF_2019__69_3_1309_0
Wu, Yunhui. Growth of the Weil–Petersson inradius of moduli space. Annales de l'Institut Fourier, Volume 69 (2019) no. 3, pp. 1309-1346. doi : 10.5802/aif.3272. https://aif.centre-mersenne.org/articles/10.5802/aif.3272/

[1] Ahlfors, Lars V. Some remarks on Teichmüller’s space of Riemann surfaces, Ann. Math., Volume 74 (1961), pp. 171-191 | DOI | Zbl

[2] Akrout, H. Singularités topologiques des systoles généralisées, Topology, Volume 42 (2003) no. 2, pp. 291-308 | DOI | MR | Zbl

[3] Balacheff, Florent; Makover, Eran; Parlier, Hugo Systole growth for finite area hyperbolic surfaces, Ann. Fac. Sci. Toulouse, Math., Volume 23 (2014) no. 1, pp. 175-180 | DOI | MR | Zbl

[4] Bridson, Martin R.; Haefliger, André Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften, 319, Springer, 1999 | MR | Zbl

[5] Brock, Jeffrey The Weil–Peterson metric and volumes of 3-dimensional hyperbolic convex cores, J. Am. Math. Soc., Volume 16 (2003) no. 3, pp. 495-535 | DOI | Zbl

[6] Brock, Jeffrey; Bromberg, Kenneth W. Inflexibility, Weil–Peterson distance, and volumes of fibered 3-manifolds, Math. Res. Lett., Volume 23 (2016) no. 3, pp. 649-674 | DOI | MR | Zbl

[7] Brock, Jeffrey; Margalit, Dan Weil–Petersson isometries via the pants complex, Proc. Am. Math. Soc., Volume 135 (2007) no. 3, pp. 795-803 | DOI | MR | Zbl

[8] Brock, Jeffrey; Masur, Howard; Minsky, Yair Asymptotics of Weil–Peterson geodesic. I. Ending laminations, recurrence, and flows, Geom. Funct. Anal., Volume 19 (2010) no. 5, pp. 1229-1257 | DOI | Zbl

[9] Brock, Jeffrey; Masur, Howard; Minsky, Yair Asymptotics of Weil–Peterson geodesics II: bounded geometry and unbounded entropy, Geom. Funct. Anal., Volume 21 (2011) no. 4, pp. 820-850 | DOI | Zbl

[10] Brock, Jeffrey; Modami, Babak Recurrent Weil–Petersson geodesic rays with non-uniquely ergodic ending laminations, Geom. Topol., Volume 19 (2015) no. 6, pp. 3565-3601 | DOI | MR | Zbl

[11] Buser, Peter; Sarnak, Peter On the period matrix of a Riemann surface of large genus, Invent. Math., Volume 117 (1994) no. 1, pp. 27-56 (With an appendix by J. H. Conway and N. J. A. Sloane) | DOI | MR | Zbl

[12] Cavendish, William; Parlier, Hugo Growth of the Weil–Peterson diameter of moduli space, Duke Math. J., Volume 161 (2012) no. 1, pp. 139-171 | DOI | Zbl

[13] Chu, Tienchen The Weil–Peterson metric in the moduli space, Chin. J. Math., Volume 4 (1976) no. 2, pp. 29-51 | MR | Zbl

[14] Daskalopoulos, Georgios; Wentworth, Richard Classification of Weil–Peterson isometries, Am. J. Math., Volume 125 (2003) no. 4, pp. 941-975 | DOI | Zbl

[15] Fay, John D. Fourier coefficients of the resolvent for a Fuchsian group, J. Reine Angew. Math., Volume 293/294 (1977), pp. 143-203 | MR | Zbl

[16] Fletcher, Alastair; Kahn, Jeremy; Markovic, Vladimir The moduli space of Riemann surfaces of large genus, Geom. Funct. Anal., Volume 23 (2013) no. 3, pp. 867-887 | DOI | MR | Zbl

[17] Fujiwara, Koji Geometry of the Funk metric on Weil–Peterson spaces, Math. Z., Volume 274 (2013) no. 1-2, pp. 647-665 | DOI | MR | Zbl

[18] Gardiner, Frederick P. Schiffer’s interior variation and quasiconformal mapping, Duke Math. J., Volume 42 (1975), pp. 371-380 | DOI | MR | Zbl

[19] Gardiner, Frederick P. A correspondence between laminations and quadratic differentials, Complex Variables, Theory Appl., Volume 6 (1986) no. 2-4, pp. 363-375 | DOI | MR | Zbl

[20] Gendulphe, Matthieu The injectivity radius of hyperbolic surfaces and some Morse functions over moduli spaces (2015) (https://arxiv.org/abs/1510.02581) | Zbl

[21] Gromov, Misha Metric structures for Riemannian and non-Riemannian spaces, Modern Birkhäuser Classics, Birkhäuser, 2007, xx+585 pages | MR | Zbl

[22] Guth, Larry; Parlier, Hugo; Young, Robert Pants Decompositions of Random Surfaces, Geom. Funct. Anal., Volume 21 (2011) no. 5, pp. 1069-1090 | DOI | MR | Zbl

[23] Hamenstaedt, Ursula Teichmueller flow and Weil–Peterson flow (2015) (https://arxiv.org/abs/1505.01113)

[24] Huang, Zheng On asymptotic Weil–Peterson geometry of Teichmüller space of Riemann surfaces, Asian J. Math., Volume 11 (2007) no. 3, pp. 459-484 | DOI | MR | Zbl

[25] Huang, Zheng The Weil–Peterson geometry on the thick part of the moduli space of Riemann surfaces, Proc. Am. Math. Soc., Volume 135 (2007) no. 10, pp. 3309-3316 | DOI | MR | Zbl

[26] Hubbard, John Hamal Teichmüller theory and applications to geometry, topology, and dynamics. Vol. 1: Teichmüller theory, Matrix Editions, 2006, xx+459 pages | Zbl

[27] Imayoshi, Yoichi; Taniguchi, Masahiko An introduction to Teichmüller spaces, Springer, 1992 (Translated and revised from the Japanese by the authors) | DOI | Zbl

[28] Keen, Linda Collars on Riemann surfaces, Discontinuous groups and Riemann surfaces (Proc. Conf., Univ. Maryland, College Park, Md., 1973) (Annals of Mathematics Studies), Volume 79, Princeton University Press, 1974, pp. 263-268 | MR | Zbl

[29] Kerckhoff, Steven P. The Nielsen realization problem, Ann. Math., Volume 117 (1983) no. 2, pp. 235-265 | MR | Zbl

[30] Liu, Kefeng; Sun, Xiaofeng; Yau, Shing-Tung Good geometry on the curve moduli, Publ. Res. Inst. Math. Sci., Volume 44 (2008) no. 2, pp. 699-724 | MR | Zbl

[31] Liu, Kefeng; Xu, Hao Recursion formulae of higher Weil–Peterson volumes, Int. Math. Res. Not. (2009) no. 5, pp. 835-859 | Zbl

[32] Masur, Howard Extension of the Weil–Peterson metric to the boundary of Teichmuller space, Duke Math. J., Volume 43 (1976) no. 3, pp. 623-635 | Zbl

[33] Masur, Howard; Wolf, Michael The Weil–Peterson isometry group, Geom. Dedicata, Volume 93 (2002), pp. 177-190 | DOI | Zbl

[34] Mirzakhani, Maryam Weil–Petersson volumes and intersection theory on the moduli space of curves, J. Am. Math. Soc., Volume 20 (2007) no. 1, pp. 1-23 | DOI | MR | Zbl

[35] Mirzakhani, Maryam On Weil–Petersson volumes and geometry of random hyperbolic surfaces, Proceedings of the International Congress of Mathematicians. Volume II (2010), pp. 1126-1145 | MR | Zbl

[36] Mirzakhani, Maryam Growth of Weil–Peterson volumes and random hyperbolic surfaces of large genus, J. Differ. Geom., Volume 94 (2013) no. 2, pp. 267-300 | DOI | MR | Zbl

[37] Mirzakhani, Maryam; Zograf, Peter Towards large genus asymptotics of intersection numbers on moduli spaces of curves, Geom. Funct. Anal., Volume 25 (2015) no. 4, pp. 1258-1289 | DOI | MR | Zbl

[38] Mumford, David A remark on Mahler’s compactness theorem, Proc. Am. Math. Soc., Volume 28 (1971), pp. 289-294 | MR | Zbl

[39] Penner, Robert C. Weil–Petersson volumes, J. Differ. Geom., Volume 35 (1992) no. 3, pp. 559-608 http://projecteuclid.org/euclid.jdg/1214448257 | DOI | MR | Zbl

[40] Rafi, Kasra; Tao, Jing The diameter of the thick part of moduli space and simultaneous Whitehead moves, Duke Math. J., Volume 162 (2013) no. 10, pp. 1833-1876 | DOI | MR | Zbl

[41] Riera, Gonzalo A formula for the Weil–Peterson product of quadratic differentials, J. Anal. Math., Volume 95 (2005), pp. 105-120 | DOI | MR | Zbl

[42] Schmutz, Paul Riemann surfaces with shortest geodesic of maximal length, Geom. Funct. Anal., Volume 3 (1993) no. 6, pp. 564-631 | DOI | MR | Zbl

[43] Schmutz, Paul Congruence subgroups and maximal Riemann surfaces, J. Geom. Anal., Volume 4 (1994) no. 2, pp. 207-218 | DOI | MR | Zbl

[44] Schumacher, Georg Harmonic maps of the moduli space of compact Riemann surfaces, Math. Ann., Volume 275 (1986) no. 3, pp. 455-466 | DOI | MR | Zbl

[45] Schumacher, Georg; Trapani, Stefano Estimates of Weil–Peterson volumes via effective divisors, Commun. Math. Phys., Volume 222 (2001), pp. 1-7 | DOI | Zbl

[46] Teo, Lee-Peng The Weil–Peterson geometry of the moduli space of Riemann surfaces, Proc. Am. Math. Soc., Volume 137 (2009) no. 2, pp. 541-552 | MR | Zbl

[47] Tromba, Anthony J. On a natural algebraic affine connection on the space of almost complex structures and the curvature of Teichmüller space with respect to its Weil–Peterson metric, Manuscr. Math., Volume 56 (1986) no. 4, pp. 475-497 | DOI | Zbl

[48] Wolf, Michael The Weil–Peterson Hessian of length on Teichmüller space, J. Differ. Geom., Volume 91 (2012) no. 1, pp. 129-169 | DOI | Zbl

[49] Wolf, Michael; Wu, Yunhui Uniform Bounds for Weil–Peterson Curvatures, Proc. Lond. Math. Soc., Volume 117 (2018) no. 5, pp. 1041-1076 | DOI | Zbl

[50] Wolpert, Scott A. Noncompleteness of the Weil–Petersson metric for Teichmüller space, Pac. J. Math., Volume 61 (1975) no. 2, pp. 573-577 | DOI | Zbl

[51] Wolpert, Scott A. The length spectra as moduli for compact Riemann surfaces, Ann. Math., Volume 109 (1979) no. 2, pp. 323-351 | MR | Zbl

[52] Wolpert, Scott A. The Fenchel-Nielsen deformation, Ann. Math., Volume 115 (1982) no. 3, pp. 501-528 | MR | Zbl

[53] Wolpert, Scott A. Chern forms and the Riemann tensor for the moduli space of curves, Invent. Math., Volume 85 (1986) no. 1, pp. 119-145 | DOI | MR | Zbl

[54] Wolpert, Scott A. Geodesic length functions and the Nielsen problem, J. Differ. Geom., Volume 25 (1987) no. 2, pp. 275-296 | DOI | MR | Zbl

[55] Wolpert, Scott A. Geometry of the Weil–Petersson completion of Teichmüller space, Lectures on geometry and topology (Surveys in Differential Geometry), Volume 8, International Press., 2003, pp. 357-393 | Zbl

[56] Wolpert, Scott A. Weil–Petersson perspectives, Problems on mapping class groups and related topics (Proceedings of Symposia in Pure Mathematics), Volume 74, American Mathematical Society, 2006, pp. 269-282 | DOI | MR | Zbl

[57] Wolpert, Scott A. Behavior of geodesic-length functions on Teichmüller space, J. Differ. Geom., Volume 79 (2008) no. 2, pp. 277-334 | DOI | MR | Zbl

[58] Wolpert, Scott A. Families of Riemann surfaces and Weil–Peterson geometry, CBMS Regional Conference Series in Mathematics, 113, American Mathematical Society, 2010, viii+118 pages | Zbl

[59] Wu, Yunhui Iteration of mapping classes and limits of Weil–Peterson geodesics (2012) (preprint)

[60] Wu, Yunhui The Riemannian sectional curvature operator of the Weil–Peterson metric and its application, J. Differ. Geom., Volume 96 (2014) no. 3, pp. 507-530 | MR | Zbl

[61] Wu, Yunhui On the Weil–Peterson curvature of the moduli space of Riemann surfaces of large genus, Int. Math. Res. Not. (2017) no. 4, pp. 1066-1102 | MR | Zbl

[62] Yamada, Sumio On the geometry of Weil–Peterson completion of Teichmüller spaces, Math. Res. Lett., Volume 11 (2004) no. 2-3, pp. 327-344 | DOI | Zbl

[63] Zograf, Peter On the large genus asymptotics of Weil–Peterson volumes (2008) (https://arxiv.org/abs/0812.0544)

Cited by Sources: