A -dimensional foliation on a differentiable manifold is said to extend provided there exists a -dimensional foliation on with . Our main result asserts that if and extends over relatively compact subsets of .
On dit qu’une structure feuilletée de dimension sur une variété différentiable se prolonge s’il existe une structure feuilletée de dimension sur telle que . Le résultat principal de cet article est que se prolonge sur les ensembles relativement compacts de sous les hypothèses que et soient orientables, que soit propre et que la classe d’Euler de s’annule.
@article{AIF_1969__19_2_155_0, author = {Smith, J. W.}, title = {Extending regular foliations}, journal = {Annales de l'Institut Fourier}, pages = {155--168}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {19}, number = {2}, year = {1969}, doi = {10.5802/aif.325}, zbl = {0176.21403}, mrnumber = {42 #1143}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.325/} }
Smith, J. W. Extending regular foliations. Annales de l'Institut Fourier, Volume 19 (1969) no. 2, pp. 155-168. doi : 10.5802/aif.325. https://aif.centre-mersenne.org/articles/10.5802/aif.325/
[EDT] Elementary Differential Topology, revised edition, Annals of Math. Study 54, Princeton, N.J., (1966). | Zbl
,[1] Theory of Lie Groups, Princeton, (1946). | Zbl
,[2] Foundations of Algebraic Topology, Princeton, (1952). | MR | Zbl
and ,[3] Fibre Bundles, McGraw-Hill, (1966). | MR | Zbl
,[4] Lectures on Characteristic Classes, mimeographed notes, Princeton, (1957).
,[5] A Global Formulation of the Lie Theory of Transformation Groups, Amer. Math. Soc. Memoir 22, (1957). | MR | Zbl
,[6] The Euler class of generalized vector bundles, Acta Math. 115 (1966), 51-81. | MR | Zbl
,[7] Submersions of codimension 1, J. of Math. and Mech. 18 (1968), 437-444. | MR | Zbl
,[8] Commuting vectorfields on open manifolds, Bull. Amer. Math. Soc., 15 (1969), 1013-1016. | MR | Zbl
,[9] The topology of Fibre Bundles, Princeton, (1951). | MR | Zbl
,Cited by Sources: