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EXTENDING REGULAR FOLIATIONS (*)
by J. Wolfgang SMITH

1. Introduction.

In this paper M shall denote an open orientable differen-
tiable n-manifold. To fix our ideas, we take « differentiable »
to mean C00 throughout, and we suppose M to be Hausdorff
and have empty boundary (1). Let F denote a p-dimensional
differentiable foliation (2) on M, i.e. a completely integrable
smooth p-dimensional differential system on M with
0 < p < n. Thus F assigns to every x e M a p-dimensional
subspace of the tangent vectorspace ]VLp, and moreover,
every point of M lies on a unique p-dimensional maximal
integral manifold of F (in the sense of Che valley [1]). These
integral manifolds will be referred to as the leaves of F,
and we let TC : M -> M/F denote the natural projection
of M onto the quotient space M/F obtained by identifying
points belonging to the same leaf. The foliation is called
regular if TC admits local cross-sections. For a regular foliation
F the quotient M/F can be regarded as a differentiable
m-manifold (with m = n — p), and -n will then be diffe-
rentiable. However, M/F will not in general be Hausdorff.
The manifold M being orientable, we can define orientability
for F by the condition that M/F be orientable, and this
will henceforth be assumed. The tangent bundle r(M/F)
has then an Euler class (8) yp? whose algebraic sign depends

(*) Research supported in part by National Science Foundation Grant GP-6648.
(1) None of these suppositions is in fact crucial.
(2) For basic terminology and results relating to foliations we refer to Palais [5],

Chapter i.
(8) Milnor [4]. Although Milnor takes the base space to be Hausdorff, his cons-

truction of the Euler class does not depend upon this assumption.



156 J. WOLFGANG SMITH

upon a choice of orientation. Assuming such a choice (or
alternatively taking yp to be determined modulo algebraic
sign) we shall refer to ^p as the Euler class of F. It may be
remarked that the notion of an Euler class applies to nonre"
gular foliations as well, but it cannot in general be defined
in terms of a bundle over the quotient space (4).

Let us suppose, for the moment, that M/F is Hausdorff.
Then it is known to be triangulable, and by the classical
obstruction theory (5) it will admit a nonzero vectorfield (or
a direction field) if and only if yp is zero. Moreover, a direction
field on M/F pulls back under TC to a (p + 1) — dimen-
sional orientable foliation P on M such that F c F in the
obvious sense. Such a foliation P will be called an extension
of F. Conversely one sees that an extension of F gives rise
to a direction field on M/F (whose algebraic sign is deter-
mined by a choice of orientations). When M/F is not Haus-
dorff it is still true that the existence of direction fields on M/F
is equivalent to the existence of extensions of F, and it is also
true that the vanishing of ^p constitutes a necessary condition
for the existence of these structures. The question of suffi-
ciency, however, appears to be open. The main result of this
paper asserts sufficiency in the following weakened sense :

THEOREM A. — An orientable regular foliation on M with
vanishing Euler class extends on relatively compact subsets^
of M.

Thus when yp == 0 an extension F of F exists at least
on all relatively compact subsets D c M. It may be noted
that no corresponding solution of the direction field problem
for arbitrary non-Hausdorff manifolds can be envisaged.

At this point one is naturally interested to find geometric
conditions on M and F which imply that y^p == 0. The
following leads to one such set of conditions.

LEMMA B. — Let ¥ be a regular 1-dimensional foliation
on M without compact leaves. Then TC : M -> M/F induces an
isomorphism between the respective singular homology groups.

(A) Smith [6].
(5) Steenrod [9].
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We note that the Euler class of a g-plane bundle has order 2
when q is odd (6). The notation H^M) = Q will signify
that the ^-dimensional singular integral cohomology of M
vanishes or has no torsion of order 2, depending on whether q
is even or odd, respectively. Combining Theorem A with
Lemma B thus gives:

THEOREM B. — Let F be a regular orientable 1-dimensional
foliation on M without compact leaves. If IP^M) == Q,
then F extends on relatively compact subsets of M.

This result can be sharpened if one replaces F by a corres-
ponding vectorfield. A nonzero differentiable vectorfield on
M will be called nonrecurrent if the induced foliation is regular
and admits no compact leaves. Using Theorem B we
establish the following results in [8]:

THEOREM C. — Let X be a nonrecurrent vectorfield on M
and let D c M be relatively compact. If H7l~l(M) = Q, there
exists a vectorfield Y on D such that X, Y are linearly
independent and commute.

THEOREM D. —- If IP-^M) = Q, then every relatively
compact subset of M submerges in the plane.

The present paper is devoted to a proof of Theorem A and
Lemma B. An essential ingredient in our proof of Theorem A
is a triangulation theorem which may also be of independent
interest. We are greatly indebted to J. R. Munkres for having
contributed the Appendix to this paper, setting forth a proof
of this result.

2. Equivariant vectorfields.

Let Eo, . . ., E, denote differentiable m-manifolds. For
each pair (i, /) of indices, let

y,,: (U.,, A,,)->(U,, A,,)

denote a diffeomorphism, where U^ c E; is open and A,, c U,,

(6) Milnor [4], p. 41. This again does not involve the assumption of a Hausdorff
base space.
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is compact. We shall assume that this family of diffeomorphisms
satisfies the pseudo-group conditions

9n = identity
?ifc == fjk 0 Tu (whenever the composition is defined).

Let E denote the disjoint union of the manifolds E;. A
vector field X on E will be called A-equivariant provided

TA,, A- TA,,
xf fx
A,^ A,

commutes for every index pair (i, /). Here TA^ denotes
the total space of the tangent bundle r(E) restricted to
A^, and d<p^ denotes the differential of <p^.

THEOREM 1. — Let E be oriented and the y^ orientation
preserving. Let N be an orientable differentiable m-manifold
(not necessarily Hausdorff) with vanishing Euler class, and
IT : E -> N an immersion such that

(2.1) Uy ̂  U,,
TT^ ^/TT

N

commutes for every index pair (i, /). Then E admits a diffe-
rentiable nonzero A-equivariant vectorfield.

By the triangulation theorem of J. R. Munkres (see Appen-
dix) there exist triangulations K, of E( and finite sub-
complexes Lij of K, such that

i) ^^IL^ICH,
ii) (pij maps |L^| simplicially onto |L^[.

We shall establish the existence of a differentiable nonzero
vectorfield X on E such that

(2.2)
T|L,,| A T|L,,|
xf (x
ILd -̂ - 1 .̂1
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commutes for all (i, /). Since A^c|L,y|, X will then be
A-equivariant.

Let RL denote the equivalence relation on E generated
by all pairs (x, y)e[L,y| X |L^| such that y == fi/a;).
Let E denote the quotient space E/RL and a: E —> E
the projection. We observe that the given triangulation K
of E induces a triangulation of E. Moreover, by the usual
clutching construction (7) the bundle r(E) induces an orien-
table m-plane bundle ^ over E, together with a bundle map
h: T(E) -> S; over a. In other words, for every pair (i, /)
were are « glueing together » the bundle spaces T[ L^| and
T| L^[ via dffij. The total space TE; of S; is thus a quotient
of TE, and h: TE -> T^ a projection. Now let

{x, S, w) e E X E X N

such that x = ^(x) and w = a(a?). Let hy: JLy —> ^g,
d^: Ea; —> Ny, denote the fibre isomorphism induced by the
bundle maps h and dir, respectively, and let gg; = dr:^ o (A^)~1.
Commutativity of the diagrams (2.1) implies that gs depends
only on x, and one obtains thus a function g : T^ -> TN
which restricts to an isomorphism on the fibres. Since
d^ = g o h and h is a projection, g is continuous because
dn is continuous. Hence g : S; —> r(N) is a bundle map.

It now follows by naturality that S; has vanishing Euler
class. Moreover, since E is triangulable, one obtains thus
a nonzero cross-section X : E -> TE; by classical obstruction
theory (8) and this pulls back under h to a nonzero vector-
field X° on E. But our construction clearly implies commu-
tativity of the diagrams (2.2).

However, the construction does not guarantee differen-
tiability of X°. We will complete the argument by showing
that X° can be approximated by a smooth vectorfield X
without losing the commutativity conditions (2.2). Let A c E
denote an open relatively compact subset containing [L^[
for all (i, /), and let B = E — A. It is not difficult to see
that there exists then a nonzero differentiable vectorfield X*

(7) Husemoller [3], p. 123.
(8) Steenrod [9], § 39.6.
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on E which agrees with X° on every |L,;[ and is diffe-
rentiable on B. For every index k we let

v^U^ W,=U|L,^ = \^J ^h Wfc = ̂ J \^ki\ ;
i^k i^fc

and we let °&^ denote the set of all nonzero differentiable
vectorfields X defined on B u V^ such that i) X agrees
with X* on B, ii) the diagram (2.2) commutes for all pairs
(i, /') with i, / ^ /c. We observe that every X e %^ deter-
mines a nonzero differentiable vectorfield JC on B u W^
(in an obvious way). We would like to argue that if X is
« sufficiently close » to X*, JC will be near enough to X*
to extend to a nonzero vectorfield on B u E^. By a well
known result (9) this would imply that ^K extends to a
nonzero differentiable vectorfield on B u E^, and consequently
that X extends to a vectorfield in S .̂ To make this precise,
let p denote a Riemannian metric on r(E). For every S c E
and vectorfield X defined on S, let

ix(X|S)=l.u.b. {p(X,, X;)},
a?€S

where X^.,X^ denote the respective tangent vectors at x.
Compactness of the spaces W^ and relative compactness of A
permit us to make the following observations :

1) There exists a constant X > 1 such that

^(X|W,) < Xp.(X|V^)

for all k > 0 and X e 9g^.
2) There exists an £ > 0 such that for every k > 0

and Xe=9^_i with pi(X|Wk) < § < s, X extends to a
vectorfield Ye^ with (x(Y|Efc) < §.

But this does the trick. For we can choose Xo e %Q such
that

i^(Xo|Eo) < ^
This implies by 1) that

A|W,) < ̂  < £

(9) Steenrod [9], § 6.7.
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and hence by 2) that Xo extends to Xi e %i with

(x(X,|V,) <r 'v ' . i i • i/ " ^—i

By induction one thus obtains a vectorfield X, e 8 .̂

3. Proof of Theorem A.

For r > 0 and q a positive integer let
open cube in R^ given by

J? denote the

si1=1
< r,

where the (, denote natural coordinates in R^ A differen-
tiable chart ^ : J? X Jf -> M will be called flat (with respect
to the foliation F) if for every u e J^ the points
{^{u, ^) |^eJf} lie on a single leaf of F. A flat chart ^ is
regular if every leaf of F meets ^(J? X Jf) in at most one
connected component. Since F is regular, every point of M
is covered by a flat regular chart.

Let D be a relatively compact subset of M. There exists
then a finite family of flat regular charts ^: J^ X J? —> M
such that {^jW X J?)} constitutes a covering of D. Let

E, = W X 0), Bj = W X 0)

V - U W X J?). W = [J W X J?);
J J

and let B(, W denote the respective closures. Thus every E^
is diffeomorphic to an open m-cube and By c Ey is compact.
Moreover, W is an open subset of M containing D. For
any subset S c M, let Rs denote the equivalence relation
on S consisting of all pairs (a?, y ) such that x and y are
connected by a curve in S lying in a single leaf of F. For
every index pair (i, /) let U^- denote the set of all x e E(
such that {x, y) e Ry for some y e Ey. We note that this
point y is uniquely determined by x (regularity of ^j),
so that one obtains functions y^-: U^ —> U^« Similarly, for
every pair (i, /) let
(x, y) e Rw for some
easily verified.

^•UA,/ denote the set of all x e B, such that
z/eB,. The following assertions are
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LEMMA 3.1. — For every index pair (i, /'), U^<= E; is open
and Aij c U^ compact. Each y^- constitutes a diffeomorphism
of Vij onto Vji and maps A-ij onto A^. The family of
these diffeomorphisms satisfies the pseudogroup conditions (as
given in Theorem 1).

The disjoint union E of the spaces Ey constitutes a
differentiable m-manifold, and we note that E can be oriented
so as to render every <p^ orientation preserving. Moreover,
the natural projection TT : E -> M/F commutes with every
(fij. By Lemma 3.1 and Theorem 1 one concludes that E
admits a differentiable nonzero A-equivariant vectorfield X.
Since D c W, it will suffice to prove :

LEMMA 3.2. — X induces an extension of F on W.
Let FQ denote the restriction of F to W and

P : W -> W/Fo the natural projection. Thus W/Fo constitutes
a differentiable m-manifold (not necessarily Hausdorff), and
(S maps each B^ diffeomorphically onto a subset VycW/Fo.
The restriction of X to By consequently induces a nonzero
differentiable vectorfield Y; on Vy. Moreover, A-equi-
variance of X implies that Y^, Yy agree on V\ n Vy for
every index pair (i, /). For if v e V; n Vy and x, y denote
the corresponding points in B; and By, respectively, then
{x, y} e Rw c RW. Hence y = 9^) and Xy = d^X^) by
A-equivariance. Since (3 commutes with y^-, it follows that
rfj3(X^) = d(3(Xy), as claimed. But the subsets {Vy} cover
W/Fo, and one obtains thus a nonzero differentiable vector-
field Y on W/Fo, which in turn determines a 1-dimensional
foliation H. Finally, H pulls back under (3: W -^ W/Fo
to an orientable (p 4- 1)-dimensional foliation (10) on W
which extends F.

4. Proof of Lemma B.

Let F be a regular 1-dimensional foliation on M without
compact leaves, and let TT : M -> N denote the natural
projection, where N = M/F. Neither M nor F are required

(10) By Palais [5], Chapter i, Theorem XIII.
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to be orientable. It will be shown that the induced map
TC^S: : C^(M) —> C^(N) between the respective singular chain
complexes constitutes a chain homotopy equivalence.

We observe that this assertion is quite trivial in case N is
Hausdorff. Choosing a complete Riemannian metric on M
determines (11) a bundle structure for TC : M —> N with fibre R
(the real line) and structure group G consisting of all trans-
formations of the form ( —> ( ± t + ^)? with ae R. The
fibre being contractible and N being a Hausdorff manifold
implies (12) that there exists a cross-section s: N -> M. The
restriction of TT to ^(N) is then a homeomorphism, and
^(N) is clearly a deformation retract of M. Thus one obtains
the desired conclusion. On the other hand, if N is not Haus-
dorff, a cross-section of it may not exist. Consider M, for
example, to be a punctured plane foliated by a parallel family
of straigh lines. The leaf space N is then the real line with
a single point doubled, and it is clear that a cross-section s :
N -> M does not exist.

To prove Lemma B, we choose a complete Riemannian
metric on M and an open covering T) of N such that every
V e T) admits a local cross-section Sy : V -> M. The metric,
together with sy, permits us to define a projection pv ''
^^(V) —> R, and this gives a homeomorphism 6v:
IT-^V) -> V X R by setting Ov(^) = (Tc(^), pv(^)).

Let C^(N, T)) denote the subcomplex of C^:(N) generated
by singular simplexes subordinate to T). The inclusion
C^(N, V) —> C^:(N) is then a chain homotopy equivalence (13).
Similarly we let W == ir"1^) and observe that the inclusion
C^:(M, W) —> C^:(M) is likewise a chain homotopy equivalence.
It will therefore clearly suffice to show that

^: C^(M, W)-.C^(N, V)
is a chain homotopy equivalence. This will be accomplished
by constructing a chain map T : C^(N, D) -> C^:(M, W) which
preserves singular simplexes and satisfies TC :̂ o T = 1. In
other words, instead of constructing a cross-section s : N —- M
(which may not exist), we construct a chain cross-section T

(n) Smith [8].
(12) Steenrod [9], § 12.2.
(13) Eilenberg and Steenrod [2], Theorem 8.2.
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for TI^:: C^:(M, W) -> C^(N, °0). But T determines a chain
homotopy D: C^(M, W) -> C^(M, W) by the following
construction : Let o-: Ag -> M be a singular ^-simplex subor-
dinate to W and let (TO == T o 7^(0'). For every ye Ag, the
points o"o(y) and <r(z/) belong to the same leaf of F. Since
every leaf of F is homeomorphic to R, the two points
determine a homeomorph [o'o(y), ^{y)~\ of a directed line
segment. We can therefore define a singular prism Py:
A^ X I -> M (I denotes the unit interval) by letting P<j(y, ()
be the point in [o"o(y), °'(y)] which divides this segment in the
ration (: 1, this being understood in terms of the distance
function on [oo(y), o"(y)] induced by our Riemannian metric.
Continuity of P<y is immediate, and by the usual process (14)
the correspondance o" —> Py determines a chain homotopy D.
Moreover, one can verify by an easy calculation that

bD, + D,-i ^ == 1 - T o ̂ ,

where & and 1 denote the boundary operator and identity
map of C^(M, W), respectively. It remains, therefore, to
establish the existence of T.

To this end we make the inductive hypothesis that Tg:
C^(N, ̂  -> Cy(M, W) has been defined for all q < r, subject
to the conditions

(4.1) T,-i o ̂  = ̂  o T,.

More precisely, for every singular ^-simplex a": Ag —> N
subordinate to T), T^(o-) is assumed to be a singular ^-simplex
a : A^ —> M such that TC o o- == <r. Now let o": Ar -> V denote
a singular r-simplex, with V e T). The function r^-i deter-
mines then a map hy: Ap —> M by virtue of condition (4.1),
where Ap denotes the boundary of A,.. This defines a map
pv ° ^<j '• Ar -> R, which can be extended to a map 9,7: Ar -^ R.
Let g^ : A^ ~> M be defined by setting gy{y) = ©^(^(t/), y<j(y)).
One now has a commutative diagram

^(V)

(14) Eilenberg and Steenrod [2], Chapter vn, § 6.
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Setting ^(a) = g, defines T^ on the generators of C^(N, ̂
and we extend by linearity. It is obvious that ^ is a simplex
preserving cross-section of TC^, and commutativity of (4.2)
implies condition (4.1) with q = r. This establishes the
existence of T.

Appendix.
(This appendix was written by J. R. Munkres.)

DEFINITION. — Let f,: | K,[ —^ R7" be a homeomorphism
where K^ is a finite complex and i = 1, . . ., n. We say that
(KI) fi), . . . , (K^, /^) intersect in subcomplexes if for each
(l? /')? /'^(AdK,!) n ^(|Ky|)) is the polytope of a subcomplex L,j
of K, ayzd if fj^fi is a linear isomorphism of L^- with L,,.
They are said to intersect in full subcomplexes if each L., is
full in K^. (This means that a simplex of K, belongs to L^.
if all its vertices are in L^..) It is easy to see that if
(Ki, /i), . . . , (K^, /*J intersect in subcomplexes, then
(KI, /i), . . ., (K^, /^) intersect in full subcomplexes, where K'i
is the first barycentric subdivision of K;.

It (KI? /i)? • • • ? (K^, yj intersect in full subcomplexes,
then there exists a complex K and a homeomorphism f:
K-^R" such that f(\ K|) = (J ̂ ,(| K,|) and such that /-Y,

is a linear isomorphism of Kj with a subcomplex of K for
each /. Furthermore, (K, f) is unique up to linear isomor-
phism. It is called the union of (Ki, /i), . . ., (K^, /'J. (Com-
pare 10.1 of [EDT].)

Now suppose that (Ki, /i), .... (K^, f^) intersect in full
subcomplexes and that each f,: K, -> R"1 is a smooth imbed-
ding, in the sense of 8.3 of [EDT]. This means not only that
it is a topological imbedding which is smooth on each simplex
of K,, but also that the differential is one-to-one. The union
(K, f) will not be an imbedding except under additional
hypotheses. (See 10.1 of [EDT].) However, one can say the
following:

LEMMA 1. — Let M.i be a subcomplex of K, such that
fW) c Int/,(|K,D. Then the union of (M^ A), . . . , (M,, /•„)
is a smooth imbedding.
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Proof. —• Let (K, f) be the union of {(K(, /;)}$ the union
M of {(M(, fi)} may be taken as a subcomplex |of K. Let x
be a point of M(. Then f^: K, -> R"1 triangulates a neigh-
borhood of fi(x), and so does f: K ~> R7", so that f^fi:
K.i -> K is a homeomorphism of St(^, K() with St(n;, K).
Since fi: St(*r, K,) -> R7" is an imbedding, d(/;)a? is 1—1,
and hence so is df^.

LEMMA 2. — Let A be a closed subset of the differentiable
manifold M. Let f: K —> M be a smooth imbedding such that
Ac IntydKI). If there is a subcomplex K.o of K such that
f\ Ko triangulates A, then f\ Ko may be extended to a triangu-
lation of M.

This lemma is problem 10.7 of [EDT]. It can be proved by
straightforward application of the triangulation techniques of
J. H. C. Whitehead expounded there.

THEOREM. — Let EO) . . ., E^ be differentiable m-manifolds.
Suppose that for each pair (i, /) of indices, we are given a diffeo-
morphism

9,,: (U,,, A,,)-^(U,, A,,),

where U^- is an open subset of E; and A^ is a compact
subset of Vij. Furthermore, <?„ is the identity and
y^ = y^ o y^. whenever the composition is defined. (This
implies U^ =) domain (9^ o (p^..)

Then there are smooth triangulations K, of E^, and finite
subcomplexes L,^ of K;, such that

1) Ay=|Ly|cU.,

ii) (pij maps |L^| simplicially onto |L^|.

Proof. — We proceed by induction on n. The theorem is
trivial for n == 0. Suppose it is true for n — 1.

Choose compact sets Byj (/ = 1, . . ., n) such that

A.QJ c Int Boy and Boj c Uoy.

Then for 1 ^ i < j ^ n, choose a compact set B^- c U^y
such that

A,y c B^ and 90^0. ^ Boy) c B^y.
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This makes sense because

Boi n Boy c Uo; n Uoy == y,o (domain ((poy ° 9»o)) c ?to(Uj)?

so that 9o<(Bot n Boy) c U,y. Finally, for 0 ^ i < j ^ n,
set By, = <p,,(B,,).

Now apply the induction hypothesis to the manifolds
Ei, . . ., E^, using

y,y: (H.y, B,y)->(Uy, By,)

as the diffeomorphisms. We then have complexes K1

smoothly triangulating E,, and subcomplexes L,y of K,
(1 ^ i, / ^ n) such that B,y c | L,y| c U,y and y,y is a
linear isomorphism of L,y with Ly,.

We then proceed to triangulate Eo. First, we may assume
that mesh K, is less than one-third the distance from A,o to
E,:•— B,o, for i= l , ..., n. (For this situation may be
obtained by choosing a very large p and replacing each K,
and Lij by its pth barycentric subdivision.) This means that
for i = 1, . . ., n, we may choose subcomplexes L,o, M,o,
and N,o of K, such that

A,o c |L,o| c Int |M,o| and |M,o| c Int |N,o| c B,o.

Consider the maps 9,0 : N,o ->Eo. Because 9,0 is a diffeo-
morphism on U,o and N;o is a smoothly imbedded complex
in E,, this map is a smooth imbedding of N,o in Eo. We
claim also these maps intersect in subcomplexes: For
?.o(N,o) n 9yo(N,o) c Bo; n Boy, so that ^(^(N.o) n yyo(N,o))
is contained in B,y c L,y. This implies that

yio^^N.o) n yyo(Nyo)) = N,o n y,,.(N,o n L,,.),

which is clearly a subcomplex of K, (since (py; is by assump-
tion simplicial on Ly,). Futhermore, the map y^o is a
linear isomorphism of this subcomplex of K; with a sub-
complex of Ky, since the subcomplex is contained in L^
and the map equals y,y there.

Without change of notation, let us replace each K^, L,o,
M,o? N,o, and L^. (1 < i, / ^ n) by its first barycentric
subdivision. The maps y , o ' ' N,o -> Eo are still smooth
imbeddings but now they intersect in full subcomplexes.
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By Lemma 1, the union

9 o : M o - ^ E o Of (Mio, ?lo)? • • • » (M^o, <Pno)

is now an imbedding. The union of (Lio, 9io)» • • .? (L^o? 9no)
may be considered as a subcomplex Lo of Mo, and <po(|Lo|)
lies in the interior of <po(|Mo|). By Lemma 2, <po : Lo -> Eo
may be extended to a smooth triangulation of Eo. Said
differently, there is a complex Ko smoothly triangulating Eo
such that <po ls a linear isomorphism of Lo with a subcomplex
of Ko. Then 9,0 ls a linear isomorphism of L;o with a
subcomplex of Ko which we denote by Lor

The proof of the theorem is now complete.
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