We provide several equivalent descriptions of a highest weight category using recollements of abelian categories. Also, we explain the connection between sequences of standard and exceptional objects.
Nous donnons plusieurs descriptions équivalentes des catégories de plus haut poids au moyen de recollements de catégories abéliennes. En outre, nous expliquons la relation entre suites d’objets standards et exceptionnels.
Accepted:
Published online:
Keywords: Highest weight category, quasi-hereditary algebra, recollement, exceptional sequence, derived category
Mot clés : Catégorie de plus haut poids, algèbre quasi-héréditaire, recollement, suite exceptionelle, catégorie dérivée
@article{AIF_2017__67_6_2679_0, author = {Krause, Henning}, title = {Highest weight categories and recollements}, journal = {Annales de l'Institut Fourier}, pages = {2679--2701}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {67}, number = {6}, year = {2017}, doi = {10.5802/aif.3147}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3147/} }
TY - JOUR AU - Krause, Henning TI - Highest weight categories and recollements JO - Annales de l'Institut Fourier PY - 2017 SP - 2679 EP - 2701 VL - 67 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3147/ DO - 10.5802/aif.3147 LA - en ID - AIF_2017__67_6_2679_0 ER -
%0 Journal Article %A Krause, Henning %T Highest weight categories and recollements %J Annales de l'Institut Fourier %D 2017 %P 2679-2701 %V 67 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3147/ %R 10.5802/aif.3147 %G en %F AIF_2017__67_6_2679_0
Krause, Henning. Highest weight categories and recollements. Annales de l'Institut Fourier, Volume 67 (2017) no. 6, pp. 2679-2701. doi : 10.5802/aif.3147. https://aif.centre-mersenne.org/articles/10.5802/aif.3147/
[1] Representation theory of Artin algebras. I, Commun. Algebra, Volume 1 (1974), pp. 177-268 | DOI | Zbl
[2] Faisceaux pervers, Analysis and topology on singular spaces (Astérisque), Volume 100, Société Mathématique de France, 1982, pp. 5-171 | Zbl
[3] Representation of associative algebras and coherent sheaves, Izv. Akad. Nauk SSSR Ser. Mat., Volume 53 (1989) no. 1, pp. 25-44 translation in Math. USSR-Izv. 34 (1990), no. 1, 23–42 | Zbl
[4] On the derived category of Grassmannians in arbitrary characteristic, Compos. Math., Volume 151 (2015) no. 7, pp. 1242-1264 | DOI | Zbl
[5] Finite-dimensional algebras and highest weight categories, J. Reine Angew. Math., Volume 391 (1988), pp. 85-99 | Zbl
[6] Quasi-hereditary algebras, Ill. J. Math., Volume 33 (1989) no. 2, pp. 280-291 | Zbl
[7] The module theoretical approach to quasi-hereditary algebras, Representations of algebras and related topics (Kyoto, 1990) (London Mathematical Society Lecture Note Series), Volume 168, Cambridge University Press, 1992, pp. 200-224 | Zbl
[8] Derived categories of Grassmannians over integers and modular representation theory, Adv. Math., Volume 304 (2017), pp. 179-226 | DOI | Zbl
[9] Des catégories abéliennes, Bull. Soc. Math. Fr., Volume 90 (1962), pp. 323-448 | DOI | Zbl
[10] Indecomposable representations. II, Algebra commut., Geometria (Convegni 1971/1972) (Symposia Mathematica), Volume 11, Academic Press, 1973, pp. 81-104 | Zbl
[11] Calculus of fractions and homotopy theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, 85, Springer, 1967, x+168 pages | Zbl
[12] Perpendicular categories with applications to representations and sheaves, J. Algebra, Volume 144 (1991) no. 2, pp. 273-343 | DOI | Zbl
[13] Exceptional bundles on surfaces with a moving anticanonical class, Izv. Akad. Nauk SSSR Ser. Mat., Volume 52 (1988) no. 4, pp. 740-757 translation in Math. USSR-Izv. 33 (1989), no. 1, 67–83 | Zbl
[14] Exceptional vector bundles on projective spaces, Duke Math. J., Volume 54 (1987) no. 1, pp. 115-130 | DOI | Zbl
[15] Residues and duality, Lecture Notes in Mathematics, 20, Springer, 1966, 423 pages | Zbl
[16] Tilting bundles on rational surfaces and quasi-hereditary algebras, Ann. Inst. Fourier, Volume 64 (2014) no. 2, pp. 625-644 | DOI | Zbl
[17] Existence de résolutions globales, Théorie des Intersections et théorème de Riemann-Roch (SGA 6, 1966/67) (Lecture Notes in Mathematics), Volume 225, Springer, 1971, pp. 160-221 | Zbl
[18] Finiteness of representation dimension, Proc. Am. Math. Soc., Volume 131 (2003) no. 4, pp. 1011-1014 | DOI | Zbl
[19] Derived categories and their use, Handbook of algebra. Volume 1, North-Holland, 1996, pp. 671-701 | Zbl
[20] Highest weight categories and strict polynomial functors, Representation theory - Current trends and perspectives, European Mathematical Society, 2017, pp. 331-373 | Zbl
[21] Derived categories, quasi-hereditary algebras, and algebraic groups, Proceedings of the Ottawa-Moosonee Workshop in Algebra (Carleton University Notes), Volume 3, Carleton University, 988, pp. 1-105 | Zbl
[22] Homological theory of recollements of abelian categories, J. Algebra, Volume 398 (2014), pp. 63-110 | DOI | Zbl
[23] -Schur algebras and complex reflection groups, Mosc. Math. J., Volume 8 (2008) no. 1, pp. 119-158 | Zbl
[24] Helices and vector bundles: Seminaire Rudakov (Rudakov, Alexei Nikolaevich, ed.), London Mathematical Society Lecture Note Series, 148, Cambridge University Press, 1990, 143 pages | Zbl
[25] Simulating algebraic geometry with algebra. I. The algebraic theory of derived categories, The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986) (Proceedings of Symposia in Pure Mathematics), Volume 47, American Mathematical Society, 1987, pp. 271-281 | Zbl
[26] Groupes proalgébriques, Publ. Math., Inst. Hautes Étud. Sci., Volume 7 (1961), pp. 341-403 | Zbl
[27] Des catégories dérivées des catégories abéliennes, Astérisque, 239, Société Mathématique de France, 1996, ix+253 pages | Zbl
Cited by Sources: