We show that the Malčev Lie algebra of the fundamental group of a compact -dimensional Sasakian manifold with admits a quadratic presentation by using Morgan’s bigradings of minimal models of mixed-Hodge diagrams. By using bigradings of minimal models, we also simplify the proof of the result of Cappelletti–Montano, De Nicola, Marrero and Yudin on Sasakian nilmanifolds.
Nous montrons, en utilisant les bigraduations de Morgan de modèles minimaux de diagrammes de Hodge, que l’algèbre de Lie de Malčev du groupe fondamental d’une variété sasakienne compacte de dimension admet une présentation quadratique pour . A l’aide de bigraduations de modèles minimaux, nous simplifions également la démonstration du résultat de Cappelletti–Montano, De Nicola, Marrero et Yudin sur les nilvariétés sasakiennes.
Revised:
Accepted:
Published online:
Keywords: Sasakian structure, Sullivan’s minimal model, Morgan’s mixed Hodge diagram, formality
Mot clés : structure sasakienne, modèle minimal de Sullivan, diagramme de Hodge mixte de Morgan, formalité
@article{AIF_2017__67_6_2533_0, author = {Kasuya, Hisashi}, title = {Mixed {Hodge} structures and {Sullivan{\textquoteright}s} minimal models of {Sasakian} manifolds}, journal = {Annales de l'Institut Fourier}, pages = {2533--2546}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {67}, number = {6}, year = {2017}, doi = {10.5802/aif.3142}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3142/} }
TY - JOUR AU - Kasuya, Hisashi TI - Mixed Hodge structures and Sullivan’s minimal models of Sasakian manifolds JO - Annales de l'Institut Fourier PY - 2017 SP - 2533 EP - 2546 VL - 67 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3142/ DO - 10.5802/aif.3142 LA - en ID - AIF_2017__67_6_2533_0 ER -
%0 Journal Article %A Kasuya, Hisashi %T Mixed Hodge structures and Sullivan’s minimal models of Sasakian manifolds %J Annales de l'Institut Fourier %D 2017 %P 2533-2546 %V 67 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3142/ %R 10.5802/aif.3142 %G en %F AIF_2017__67_6_2533_0
Kasuya, Hisashi. Mixed Hodge structures and Sullivan’s minimal models of Sasakian manifolds. Annales de l'Institut Fourier, Volume 67 (2017) no. 6, pp. 2533-2546. doi : 10.5802/aif.3142. https://aif.centre-mersenne.org/articles/10.5802/aif.3142/
[1] Fundamental groups of compact Kähler manifolds, Mathematical Surveys and Monographs, 44, American Mathematical Society, 1996, xi+140 pages | Zbl
[2] Formality of Sasakian manifoldss, J. Topol., Volume 9 (2016) no. 1, pp. 161-180 | DOI | Zbl
[3] Odd dimensional tori are contact manifolds, Int. Math. Res. Not., Volume 2002 (2002) no. 30, pp. 1571-1574 | DOI | Zbl
[4] Contact structures on , Math. Ann., Volume 358 (2014) no. 1-2, pp. 351-359 | DOI | Zbl
[5] Sasakian geometry, Oxford Mathematical Monographs, Oxford University Press, 2008, xi+613 pages | Zbl
[6] Sasakian nilmanifolds, Int. Math. Res. Not., Volume 2015 (2015) no. 15, pp. 6648-6660 | DOI | Zbl
[7] Quadratic presentations and nilpotent Kähler groups, J. Geom. Anal., Volume 5 (1995) no. 3, pp. 351-359 erratum in ibid. 7 (1997), no. 3, p. 511-514 | DOI | Zbl
[8] Real homotopy theory of Kähler manifolds, Invent. Math., Volume 29 (1975) no. 3, pp. 245-274 | DOI | Zbl
[9] Formality of Donaldson submanifolds, Math. Z., Volume 250 (2005) no. 1, pp. 149-175 erratum in ibid. 257 (2007), no. 2, p. 465-466 | DOI | Zbl
[10] Nil-manifolds as links of isolated singularities, Compos. Math., Volume 84 (1992) no. 1, pp. 91-99 | Zbl
[11] Minimal models of nilmanifolds, Proc. Am. Math. Soc., Volume 106 (1989) no. 1, pp. 65-71 | DOI | Zbl
[12] On a class of homogeneous spaces, Am. Math. Soc. Transl., Volume 39 (1951), pp. 1-33 | Zbl
[13] The algebraic topology of smooth algebraic varieties, Publ. Math., Inst. Hautes Étud. Sci., Volume 48 (1978), pp. 137-204 erratum in ibid. 64 (1986), p. 185 | DOI | Zbl
[14] Simply connected K-contact and Sasakian manifolds of dimension 7, Math. Z., Volume 281 (2015) no. 1-2, pp. 457-470 | DOI | Zbl
[15] On the cohomology of compact homogeneous spaces of nilpotent Lie groups, Ann. Math., Volume 59 (1954), pp. 531-538 | DOI | Zbl
[16] Infinitesimal computations in topology, Publ. Math., Inst. Hautes Étud. Sci., Volume 47 (1977), pp. 269-331 | DOI | Zbl
[17] Analogues of Kähler geometry on Sasakian manifolds, Massachusetts Institute of Technology (USA) (1954) (Ph. D. Thesis)
Cited by Sources: