Mixed Hodge structures and Sullivan’s minimal models of Sasakian manifolds
Annales de l'Institut Fourier, Volume 67 (2017) no. 6, pp. 2533-2546.

We show that the Malčev Lie algebra of the fundamental group of a compact 2n+1-dimensional Sasakian manifold with n2 admits a quadratic presentation by using Morgan’s bigradings of minimal models of mixed-Hodge diagrams. By using bigradings of minimal models, we also simplify the proof of the result of Cappelletti–Montano, De Nicola, Marrero and Yudin on Sasakian nilmanifolds.

Nous montrons, en utilisant les bigraduations de Morgan de modèles minimaux de diagrammes de Hodge, que l’algèbre de Lie de Malčev du groupe fondamental d’une variété sasakienne compacte de dimension 2n+1 admet une présentation quadratique pour n2. A l’aide de bigraduations de modèles minimaux, nous simplifions également la démonstration du résultat de Cappelletti–Montano, De Nicola, Marrero et Yudin sur les nilvariétés sasakiennes.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/aif.3142
Classification: 53C25, 55P62, 58A14
Keywords: Sasakian structure, Sullivan’s minimal model, Morgan’s mixed Hodge diagram, formality
Mot clés : structure sasakienne, modèle minimal de Sullivan, diagramme de Hodge mixte de Morgan, formalité
Kasuya, Hisashi 1

1 Department of Mathematics Graduate School of Science Osaka University, Osaka (Japan)
License: CC-BY-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AIF_2017__67_6_2533_0,
     author = {Kasuya, Hisashi},
     title = {Mixed {Hodge} structures and {Sullivan{\textquoteright}s} minimal models of {Sasakian} manifolds},
     journal = {Annales de l'Institut Fourier},
     pages = {2533--2546},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {67},
     number = {6},
     year = {2017},
     doi = {10.5802/aif.3142},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3142/}
}
TY  - JOUR
AU  - Kasuya, Hisashi
TI  - Mixed Hodge structures and Sullivan’s minimal models of Sasakian manifolds
JO  - Annales de l'Institut Fourier
PY  - 2017
SP  - 2533
EP  - 2546
VL  - 67
IS  - 6
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3142/
DO  - 10.5802/aif.3142
LA  - en
ID  - AIF_2017__67_6_2533_0
ER  - 
%0 Journal Article
%A Kasuya, Hisashi
%T Mixed Hodge structures and Sullivan’s minimal models of Sasakian manifolds
%J Annales de l'Institut Fourier
%D 2017
%P 2533-2546
%V 67
%N 6
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3142/
%R 10.5802/aif.3142
%G en
%F AIF_2017__67_6_2533_0
Kasuya, Hisashi. Mixed Hodge structures and Sullivan’s minimal models of Sasakian manifolds. Annales de l'Institut Fourier, Volume 67 (2017) no. 6, pp. 2533-2546. doi : 10.5802/aif.3142. https://aif.centre-mersenne.org/articles/10.5802/aif.3142/

[1] Amorós, Jaume; Burger, Marc; Corlette, A.; Kotschick, Dieter; Toledo, Domingo Fundamental groups of compact Kähler manifolds, Mathematical Surveys and Monographs, 44, American Mathematical Society, 1996, xi+140 pages | Zbl

[2] Biswas, Indranil; Fernández, Marisa; Muñoz, Vicente; Tralle, Aleksy Formality of Sasakian manifoldss, J. Topol., Volume 9 (2016) no. 1, pp. 161-180 | DOI | Zbl

[3] Bourgeois, Frédéric Odd dimensional tori are contact manifolds, Int. Math. Res. Not., Volume 2002 (2002) no. 30, pp. 1571-1574 | DOI | Zbl

[4] Bowden, Jonathan; Crowley, Diarmuid; Stipsicz, András I. Contact structures on M×S 2 , Math. Ann., Volume 358 (2014) no. 1-2, pp. 351-359 | DOI | Zbl

[5] Boyer, Charles P.; Galicki, Krzysztof Sasakian geometry, Oxford Mathematical Monographs, Oxford University Press, 2008, xi+613 pages | Zbl

[6] Cappelletti-Montano, Beniamino; De Nicola, Antonio; Marrero, Juan Carlos; Yudin, Ivan Sasakian nilmanifolds, Int. Math. Res. Not., Volume 2015 (2015) no. 15, pp. 6648-6660 | DOI | Zbl

[7] Carlson, James A.; Toledo, Domingo Quadratic presentations and nilpotent Kähler groups, J. Geom. Anal., Volume 5 (1995) no. 3, pp. 351-359 erratum in ibid. 7 (1997), no. 3, p. 511-514 | DOI | Zbl

[8] Deligne, Pierre; Griffiths, Phillip; Morgan, John; Sullivan, Dennis Real homotopy theory of Kähler manifolds, Invent. Math., Volume 29 (1975) no. 3, pp. 245-274 | DOI | Zbl

[9] Fernández, Marisa; Muñoz, Vicente Formality of Donaldson submanifolds, Math. Z., Volume 250 (2005) no. 1, pp. 149-175 erratum in ibid. 257 (2007), no. 2, p. 465-466 | DOI | Zbl

[10] Hain, Richard M. Nil-manifolds as links of isolated singularities, Compos. Math., Volume 84 (1992) no. 1, pp. 91-99 | Zbl

[11] Hasegawa, Keizo Minimal models of nilmanifolds, Proc. Am. Math. Soc., Volume 106 (1989) no. 1, pp. 65-71 | DOI | Zbl

[12] Malčev, Anatoliĭ Ivanovich On a class of homogeneous spaces, Am. Math. Soc. Transl., Volume 39 (1951), pp. 1-33 | Zbl

[13] Morgan, John W. The algebraic topology of smooth algebraic varieties, Publ. Math., Inst. Hautes Étud. Sci., Volume 48 (1978), pp. 137-204 erratum in ibid. 64 (1986), p. 185 | DOI | Zbl

[14] Muñoz, Vicente; Tralle, Aleksy Simply connected K-contact and Sasakian manifolds of dimension 7, Math. Z., Volume 281 (2015) no. 1-2, pp. 457-470 | DOI | Zbl

[15] Nomizu, Katsumi On the cohomology of compact homogeneous spaces of nilpotent Lie groups, Ann. Math., Volume 59 (1954), pp. 531-538 | DOI | Zbl

[16] Sullivan, Dennis Infinitesimal computations in topology, Publ. Math., Inst. Hautes Étud. Sci., Volume 47 (1977), pp. 269-331 | DOI | Zbl

[17] Tievsky, Aaron M Analogues of Kähler geometry on Sasakian manifolds, Massachusetts Institute of Technology (USA) (1954) (Ph. D. Thesis)

Cited by Sources: