We discuss the geometry of some arithmetic orbifolds locally isometric to a product of real hyperbolic spaces of dimension , and prove that certain sequences of non-compact orbifolds are convergent to in a geometric (“Benjamini–Schramm”) sense for low-dimensional cases (when is equal to or ). We also deal with sequences of maximal arithmetic three–dimensional hyperbolic lattices defined over a quadratic or cubic field. A motivating application is the study of Betti numbers of Bianchi groups.
Cet article est consacré à l’étude de la géométrie globale de certaines orbi-variétés localement isométriques à un produit d’espaces tridimensionnels et de plans hyperboliques. On démontre que pour les petites dimensions (pour l’espace ou le plan hyperbolique, ou un produit de plans hyperboliques) certaines suites de telles orbi-variétés non-compactes de volume fini convergent vers l’espace symétrique en un sens géométrique précis (« convergence de Benjamini–Schramm »). On traite aussi le cas des réseaux arithmétiques maximaux en dimension trois dont les corps de traces sont quadratiques ou cubiques. Une des principales motivations est d’étudier l’asymptotique des nombres de Betti des groupes de Bianchi.
Revised:
Accepted:
Published online:
Keywords: Arithmetic hyperbolic manifolds, Limit multiplicities, Three–dimensional manifolds
Mot clés : Variétés hyperboliques arithmétiques, Multiplicités limites, Variétés tridimensionnelles
@article{AIF_2017__67_6_2547_0, author = {Raimbault, Jean}, title = {On the convergence of arithmetic orbifolds}, journal = {Annales de l'Institut Fourier}, pages = {2547--2596}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {67}, number = {6}, year = {2017}, doi = {10.5802/aif.3143}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3143/} }
TY - JOUR AU - Raimbault, Jean TI - On the convergence of arithmetic orbifolds JO - Annales de l'Institut Fourier PY - 2017 SP - 2547 EP - 2596 VL - 67 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3143/ DO - 10.5802/aif.3143 LA - en ID - AIF_2017__67_6_2547_0 ER -
%0 Journal Article %A Raimbault, Jean %T On the convergence of arithmetic orbifolds %J Annales de l'Institut Fourier %D 2017 %P 2547-2596 %V 67 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3143/ %R 10.5802/aif.3143 %G en %F AIF_2017__67_6_2547_0
Raimbault, Jean. On the convergence of arithmetic orbifolds. Annales de l'Institut Fourier, Volume 67 (2017) no. 6, pp. 2547-2596. doi : 10.5802/aif.3143. https://aif.centre-mersenne.org/articles/10.5802/aif.3143/
[1] On the growth of -invariants for sequences of lattices in Lie groups, Ann. Math., Volume 185 (2017) no. 3, pp. 711-790 | DOI | Zbl
[2] Convergence of weakly Ramanujan locally symmetric spaces (in preparation)
[3] Kesten’s theorem for invariant random subgroups, Duke Math. J., Volume 163 (2014) no. 3, pp. 465-488 | DOI | MR | Zbl
[4] The virtual Haken conjecture, Doc. Math., J. DMV, Volume 18 (2013), pp. 1045-1087 (With an appendix by Agol, Daniel Groves, and Jason Manning) | MR | Zbl
[5] Large embedded balls and Heegaard genus in negative curvature, Algebr. Geom. Topol., Volume 4 (2004), pp. 31-47 | DOI | MR | Zbl
[6] Recurrence of distributional limits of finite planar graphs, Electron. J. Probab., Volume 6 (2001) paper no. 23, 13 pp. (electronic) | DOI | MR | Zbl
[7] Le spectre des surfaces hyperboliques, Savoirs Actuels (Les Ulis), EDP Sciences, Les Ulis, 2011, x+338 pages | MR | Zbl
[8] The density of discriminants of quartic rings and fields, Ann. Math., Volume 162 (2005) no. 2, pp. 1031-1063 | DOI | MR | Zbl
[9] Bounds on 2-torsion in class groups of number fields and integral points on elliptic curves (2017) (https://arxiv.org/abs/1701.02458)
[10] Sui gruppi di sostituzioni lineari con coefficienti appartenenti a corpi quadratici immaginari, Math. Ann., Volume 40 (1892) no. 3, pp. 332-412 | DOI | MR | Zbl
[11] A finiteness theorem for hyperbolic 3-manifolds, J. Lond. Math. Soc., Volume 84 (2011) no. 1, pp. 227-242 | DOI | MR | Zbl
[12] A spectral correspondence for Maaß waveforms, Geom. Funct. Anal., Volume 9 (1999) no. 6, pp. 1128-1155 | DOI | MR | Zbl
[13] Commensurability classes and volumes of hyperbolic -manifolds, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 8 (1981) no. 1, pp. 1-33 | MR | Zbl
[14] Finiteness theorems for discrete subgroups of bounded covolume in semi-simple groups, Publ. Math., Inst. Hautes Étud. Sci. (1989) no. 69, pp. 119-171 | DOI | MR | Zbl
[15] Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften, 319, Springer, 1999, xxii+643 pages | DOI | MR | Zbl
[16] Automorphic forms and representations, Cambridge Studies in Advanced Mathematics, 55, Cambridge University Press, Cambridge, 1997, xiv+574 pages | DOI | MR | Zbl
[17] Démonstration de la conjecture , Invent. Math., Volume 151 (2003) no. 2, pp. 297-328 | DOI | MR | Zbl
[18] New non-arithmetic complex hyperbolic lattices, Invent. Math., Volume 203 (2016) no. 3, pp. 681-771 | DOI | MR | Zbl
[19] The Selberg trace formula for , Mem. Am. Math. Soc., Volume 359 (1987) no. 359, pp. 1-111 | DOI | MR | Zbl
[20] Distribution of periodic torus orbits and Duke’s theorem for cubic fields, Ann. Math., Volume 173 (2011) no. 2, pp. 815-885 | DOI | MR | Zbl
[21] Fundamental units of imaginary quartic fields, 2013 (http://mathoverflow.net/q/137480, accepted answer to a question by Jean Raimbault)
[22] Reflection principles and bounds for class group torsion, Int. Math. Res. Not. IMRN (2007) no. 1 (Art. ID rnm002, 18 pp.) | DOI | MR | Zbl
[23] Algebraic number theory, Cambridge Studies in Advanced Mathematics, 27, Cambridge University Press, 1993, xiv+355 pages | MR | Zbl
[24] Systole et rayon interne des variétés hyperboliques non compactes, Geom. Topol., Volume 19 (2015) no. 4, pp. 2039-2080 | DOI | MR | Zbl
[25] Domaines fondamentaux des groupes arithmétiques (Séminaire Bourbaki), Volume 8, Société Mathématique de France, 1964, pp. 201-225 | MR | Zbl
[26] Generalizations of the Kolmogorov-Barzdin embedding estimates, Duke Math. J., Volume 161 (2012) no. 13, pp. 2549-2603 | DOI | MR | Zbl
[27] Non-arithmetic groups in Lobachevsky spaces, Publ. Math., Inst. Hautes Étud. Sci. (1988) no. 66, pp. 93-103 | MR | Zbl
[28] Algorithms in algebraic number theory, Bull. Am. Math. Soc., Volume 26 (1992) no. 2, pp. 211-244 | DOI | MR | Zbl
[29] Subgroup growth, Progress in Mathematics, 212, Birkhäuser, Basel, 2003, xxii+453 pages | DOI | MR | Zbl
[30] The arithmetic of hyperbolic 3-manifolds, Graduate Texts in Mathematics, 219, Springer, New York, 2003, xiv+463 pages | MR | Zbl
[31] The analytic torsion and its asymptotic behaviour for sequences of hyperbolic manifolds of finite volume, J. Funct. Anal., Volume 267 (2014) no. 8, pp. 2731-2786 | DOI | MR | Zbl
[32] Estimates of Hermite constants for algebraic number fields, Comment. Math. Univ. St. Pauli, Volume 50 (2001) no. 1, pp. 53-63 | MR | Zbl
[33] Le théorème d’hyperbolisation pour les variétés fibrées de dimension 3, Astérisque, 235, Société Mathématique de France, 1996, x+159 pages | MR | Zbl
[34] Riemannian geometry, Graduate Texts in Mathematics, 171, Springer, 2006, xvi+401 pages | MR | Zbl
[35] Discrete subgroups of Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, 68, Springer, 1972, ix+227 pages | MR | Zbl
[36] Higher torsion in the Abelianization of the full Bianchi groups, LMS J. Comput. Math., Volume 16 (2013), pp. 344-365 | DOI | MR | Zbl
[37] On level one cuspidal Bianchi modular forms, LMS J. Comput. Math., Volume 16 (2013), pp. 187-199 | DOI | MR | Zbl
[38] Analytic, Reidemeister and homological torsion for congruence three–manifolds (2013) (https://arxiv.org/abs/1307.2845)
[39] Asymptotics of analytic torsion for hyperbolic three–manifolds (2013) (https://arxiv.org/abs/1212.3161)
[40] A note on maximal lattice growth in , Int. Math. Res. Not. IMRN, Volume 2013 (2013) no. 16, pp. 3722-3731 | DOI | MR | Zbl
[41] Die maximalen arithmetisch definierten Untergruppen zerfallender einfacher Gruppen, Math. Ann., Volume 244 (1979) no. 3, pp. 219-231 | DOI | MR | Zbl
[42] On the cuspidal cohomology of the Bianchi modular groups, Math. Z., Volume 188 (1985) no. 2, pp. 253-269 | DOI | MR | Zbl
[43] The arithmetic and geometry of some hyperbolic three-manifolds, Acta Math., Volume 151 (1983) no. 3-4, pp. 253-295 | DOI | MR | Zbl
[44] Arbres, amalgames, , Astérisque, 46, Société Mathématique de France, 1977, 189 pages | MR | Zbl
[45] Lectures on the geometry of numbers, Springer, 1989, x+160 pages | DOI | MR | Zbl
[46] Arithmétique des algèbres de quaternions, Lecture Notes in Mathematics, 800, Springer, Berlin, 1980, vii+169 pages | MR | Zbl
Cited by Sources: