Controlled exponential growth is a stronger version of exponential growth. We prove that the homology of the free loop space has controlled exponential growth in two important situations : (1) when is a connected sum of manifolds whose rational cohomologies are not monogenic, (2) when the rational homotopy Lie algebra contains an inert element and , where denotes the radius of convergence of .
La croissance exponentielle controlée est une version forte de la croissance exponentielle. Nous prouvons que les nombres de Betti de l’espace des lacets libres sur un espace ont une croissance exponentielle controlée dans deux cas : lorsque est la somme connexe de variétés dont la cohomologie n’est pas monogène, et lorsque l’algèbre de Lie a une croissance exponentielle strictement plus grande que ses indécomposables.
Revised:
Accepted:
Published online:
Keywords: free loop space, exponential growth, inert attachment
Mot clés : espace des lacets libres, croissance exponentielle, attachement inerte
@article{AIF_2017__67_6_2519_0, author = {F\'elix, Yves and Halperin, Steve and Thomas, Jean-Claude}, title = {On {The} {Growth} of the {Homology} of a {Free} {Loop} {Space} {II}}, journal = {Annales de l'Institut Fourier}, pages = {2519--2531}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {67}, number = {6}, year = {2017}, doi = {10.5802/aif.3141}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3141/} }
TY - JOUR AU - Félix, Yves AU - Halperin, Steve AU - Thomas, Jean-Claude TI - On The Growth of the Homology of a Free Loop Space II JO - Annales de l'Institut Fourier PY - 2017 SP - 2519 EP - 2531 VL - 67 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3141/ DO - 10.5802/aif.3141 LA - en ID - AIF_2017__67_6_2519_0 ER -
%0 Journal Article %A Félix, Yves %A Halperin, Steve %A Thomas, Jean-Claude %T On The Growth of the Homology of a Free Loop Space II %J Annales de l'Institut Fourier %D 2017 %P 2519-2531 %V 67 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3141/ %R 10.5802/aif.3141 %G en %F AIF_2017__67_6_2519_0
Félix, Yves; Halperin, Steve; Thomas, Jean-Claude. On The Growth of the Homology of a Free Loop Space II. Annales de l'Institut Fourier, Volume 67 (2017) no. 6, pp. 2519-2531. doi : 10.5802/aif.3141. https://aif.centre-mersenne.org/articles/10.5802/aif.3141/
[1] The smallest singularity of a Hilbert series, Math. Scand, Volume 51 (1982), pp. 35-44 | DOI | Zbl
[2] On the number of closed geodesics on a compact riemannian manifold, Duke Math. J., Volume 49 (1982), pp. 629-632 | DOI | Zbl
[3] The homotopy Lie algebra for finite complexes, Publ. Math., Inst. Hautes Étud. Sci., Volume 56 (1983), pp. 387-410 | Zbl
[4] Rational Homotopy Theory, Graduate Texts in Mathematics, 205, Springer, 2001, xxxii+535 pages | Zbl
[5] On the growth of the homology of a free loop space, Pure Appl. Math. Q., Volume 9 (2013) no. 1, pp. 167-187 | DOI | Zbl
[6] Rational Homotopy II, World Scientific, 2015, xxxvi+412 pages | Zbl
[7] Homotopical effects of dilatations, J. Differ. Geom., Volume 13 (1978), pp. 303-310 | DOI | Zbl
[8] Suites inertes dans les algèbres de Lie graduées, Math. Scand., Volume 61 (1987), pp. 39-67 | DOI | Zbl
[9] High skeleta of CW complexes, Algebra, Algebraic Topology and their Interactions (Stockholm 1983) (Lecture Notes in Math.), Volume 1183 (1986), pp. 211-217 | Zbl
[10] Analytic properties of Poincaré series of spaces, Topology, Volume 37 (1998), pp. 1363-1370 | DOI | Zbl
[11] The Betti numbers of the free loop space of a connected sum, J. Lond. Math. Soc., Volume 64 (2001), pp. 205-228 | DOI | Zbl
[12] On the Betti numbers of the free loop space of a coformal space, J. Pure Appl. Algebra, Volume 161 (2001), pp. 177-192 | DOI | Zbl
[13] Pull-backs in homotopy theory, Can. J. Math., Volume 28 (1976), pp. 225-263 | DOI | Zbl
[14] On the structure of Hopf algebras, Ann. Math., Volume 81 (1965), pp. 211-264 | DOI | Zbl
[15] Infinitesimal Computations in Topology, Publ. Math., Inst. Hautes Étud. Sci., Volume 47 (1977), pp. 269-331 | DOI | Zbl
[16] Homotopie rationnelle et nombre de géodésiques fermées, Ann. Sci. Éc. Norm. Supér., Volume 17 (1984), pp. 413-431 | DOI | Zbl
Cited by Sources: