On The Growth of the Homology of a Free Loop Space II
Annales de l'Institut Fourier, Volume 67 (2017) no. 6, pp. 2519-2531.

Controlled exponential growth is a stronger version of exponential growth. We prove that the homology of the free loop space X has controlled exponential growth in two important situations : (1) when X is a connected sum of manifolds whose rational cohomologies are not monogenic, (2) when the rational homotopy Lie algebra L X contains an inert element and ρ(L X )<ρ(L X /[L X ,L X ]), where ρ(V) denotes the radius of convergence of V.

La croissance exponentielle controlée est une version forte de la croissance exponentielle. Nous prouvons que les nombres de Betti de l’espace des lacets libres sur un espace X ont une croissance exponentielle controlée dans deux cas : lorsque X est la somme connexe de variétés dont la cohomologie n’est pas monogène, et lorsque l’algèbre de Lie L X a une croissance exponentielle strictement plus grande que ses indécomposables.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/aif.3141
Classification: 55P62
Keywords: free loop space, exponential growth, inert attachment
Mot clés : espace des lacets libres, croissance exponentielle, attachement inerte
Félix, Yves 1; Halperin, Steve 2; Thomas, Jean-Claude 3

1 Université Catholique de Louvain, Institut de Mathématique, 2, Chemin du cyclotron, 1348 Louvain-La-Neuve (Belgium)
2 University of Maryland, Department of Mathematics, Mathematics Building, College Park, MD 20742 (USA)
3 Université d’Angers, LAREMA, 2 Bd Lavoisier, 49045 Angers Cedex (France)
License: CC-BY-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AIF_2017__67_6_2519_0,
     author = {F\'elix, Yves and Halperin, Steve and Thomas, Jean-Claude},
     title = {On {The} {Growth} of the {Homology} of a {Free} {Loop} {Space} {II}},
     journal = {Annales de l'Institut Fourier},
     pages = {2519--2531},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {67},
     number = {6},
     year = {2017},
     doi = {10.5802/aif.3141},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3141/}
}
TY  - JOUR
AU  - Félix, Yves
AU  - Halperin, Steve
AU  - Thomas, Jean-Claude
TI  - On The Growth of the Homology of a Free Loop Space II
JO  - Annales de l'Institut Fourier
PY  - 2017
SP  - 2519
EP  - 2531
VL  - 67
IS  - 6
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3141/
DO  - 10.5802/aif.3141
LA  - en
ID  - AIF_2017__67_6_2519_0
ER  - 
%0 Journal Article
%A Félix, Yves
%A Halperin, Steve
%A Thomas, Jean-Claude
%T On The Growth of the Homology of a Free Loop Space II
%J Annales de l'Institut Fourier
%D 2017
%P 2519-2531
%V 67
%N 6
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3141/
%R 10.5802/aif.3141
%G en
%F AIF_2017__67_6_2519_0
Félix, Yves; Halperin, Steve; Thomas, Jean-Claude. On The Growth of the Homology of a Free Loop Space II. Annales de l'Institut Fourier, Volume 67 (2017) no. 6, pp. 2519-2531. doi : 10.5802/aif.3141. https://aif.centre-mersenne.org/articles/10.5802/aif.3141/

[1] Anick, David J. The smallest singularity of a Hilbert series, Math. Scand, Volume 51 (1982), pp. 35-44 | DOI | Zbl

[2] Ballmann, Werner; Ziller, Wolfgang On the number of closed geodesics on a compact riemannian manifold, Duke Math. J., Volume 49 (1982), pp. 629-632 | DOI | Zbl

[3] Félix, Yves; Halperin, Stephen; Jean-Claude, Thomas The homotopy Lie algebra for finite complexes, Publ. Math., Inst. Hautes Étud. Sci., Volume 56 (1983), pp. 387-410 | Zbl

[4] Félix, Yves; Halperin, Stephen; Jean-Claude, Thomas Rational Homotopy Theory, Graduate Texts in Mathematics, 205, Springer, 2001, xxxii+535 pages | Zbl

[5] Félix, Yves; Halperin, Stephen; Jean-Claude, Thomas On the growth of the homology of a free loop space, Pure Appl. Math. Q., Volume 9 (2013) no. 1, pp. 167-187 | DOI | Zbl

[6] Félix, Yves; Halperin, Stephen; Jean-Claude, Thomas Rational Homotopy II, World Scientific, 2015, xxxvi+412 pages | Zbl

[7] Gromov, Mikhael Homotopical effects of dilatations, J. Differ. Geom., Volume 13 (1978), pp. 303-310 | DOI | Zbl

[8] Halperin, Stephen; Jean-Michel, Lemaire Suites inertes dans les algèbres de Lie graduées, Math. Scand., Volume 61 (1987), pp. 39-67 | DOI | Zbl

[9] Halperin, Stephen; Levin, Gerson High skeleta of CW complexes, Algebra, Algebraic Topology and their Interactions (Stockholm 1983) (Lecture Notes in Math.), Volume 1183 (1986), pp. 211-217 | Zbl

[10] Lambrechts, Pascal Analytic properties of Poincaré series of spaces, Topology, Volume 37 (1998), pp. 1363-1370 | DOI | Zbl

[11] Lambrechts, Pascal The Betti numbers of the free loop space of a connected sum, J. Lond. Math. Soc., Volume 64 (2001), pp. 205-228 | DOI | Zbl

[12] Lambrechts, Pascal On the Betti numbers of the free loop space of a coformal space, J. Pure Appl. Algebra, Volume 161 (2001), pp. 177-192 | DOI | Zbl

[13] Mather, Michael Pull-backs in homotopy theory, Can. J. Math., Volume 28 (1976), pp. 225-263 | DOI | Zbl

[14] Milnor, John W.; Moore, J. On the structure of Hopf algebras, Ann. Math., Volume 81 (1965), pp. 211-264 | DOI | Zbl

[15] Sullivan, Dennis Infinitesimal Computations in Topology, Publ. Math., Inst. Hautes Étud. Sci., Volume 47 (1977), pp. 269-331 | DOI | Zbl

[16] Vigué-Poirrier, Micheline Homotopie rationnelle et nombre de géodésiques fermées, Ann. Sci. Éc. Norm. Supér., Volume 17 (1984), pp. 413-431 | DOI | Zbl

Cited by Sources: