Local L 2 -regularity of Riemann’s Fourier series
Annales de l'Institut Fourier, Volume 67 (2017) no. 5, pp. 2237-2264.

We are interested in the convergence and the local regularity of the lacunary Fourier series F s (x)= n=1 + e 2iπn 2 x n s . In the 1850’s, Riemann introduced the series F 2 as a possible example of nowhere differentiable function, and the study of this function has drawn the interest of many mathematicians since then. We focus on the case when 1/2<s1, and we prove that F s (x) converges when x satisfies a Diophantine condition. We also study the L 2 - local regularity of F s , proving that the local L 2 -norms of F s around a point x behave differently around different x, according again to Diophantine conditions on x.

Dans cet article, nous nous intéressons aux propriétés de convergence et de régularité locale des séries de Fourier lacunaires F s (x)= n=1 + e 2iπn 2 x n s . Dans les années 1850, Riemann avait proposé la série F 2 comme exemple possible de fonction continue nulle part dérivable. La non-dérivabilité de F 2 et plus généralement sa régularité locale ont depuis lors été étudiées par de nombreux mathématiciens, soulevant des questions d’analyse harmonique, d’analyse complexe et d’approximation diophantienne. Nous considérons le cas 1/2<s1, et trouvons un critère diophantien sur x pour la convergence de F s (x). Nous étudions également la régularité locale de F s , en démontrant que les L 2 -exposants de F s dépendent de conditions diophantiennes sur x. Les preuves utilisent des estimées locales sur la norme L 2 des sommes partielles de F s .

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/aif.3135
Classification: 42A20, 11K60, 28C15, 28A78
Keywords: Fourier series, Diophantine approximation, local regularity, Hausdorff dimension
Mot clés : Séries de Fourier, Approximation diophantienne, Régularité locale, Dimension de Hausdorff
Seuret, Stéphane 1; Ubis, Adrián 2

1 Université Paris-Est LAMA (UMR 8050) UPEMLV, UPEC, CNRS, 94010, Créteil (France)
2 Departamento de Matemáticas Facultad de Ciencias Universidad Autónoma de Madrid 28049 Madrid (Spain)
License: CC-BY-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AIF_2017__67_5_2237_0,
     author = {Seuret, St\'ephane and Ubis, Adri\'an},
     title = {Local $L^2$-regularity  of {Riemann{\textquoteright}s} {Fourier} series},
     journal = {Annales de l'Institut Fourier},
     pages = {2237--2264},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {67},
     number = {5},
     year = {2017},
     doi = {10.5802/aif.3135},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3135/}
}
TY  - JOUR
AU  - Seuret, Stéphane
AU  - Ubis, Adrián
TI  - Local $L^2$-regularity  of Riemann’s Fourier series
JO  - Annales de l'Institut Fourier
PY  - 2017
SP  - 2237
EP  - 2264
VL  - 67
IS  - 5
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3135/
DO  - 10.5802/aif.3135
LA  - en
ID  - AIF_2017__67_5_2237_0
ER  - 
%0 Journal Article
%A Seuret, Stéphane
%A Ubis, Adrián
%T Local $L^2$-regularity  of Riemann’s Fourier series
%J Annales de l'Institut Fourier
%D 2017
%P 2237-2264
%V 67
%N 5
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3135/
%R 10.5802/aif.3135
%G en
%F AIF_2017__67_5_2237_0
Seuret, Stéphane; Ubis, Adrián. Local $L^2$-regularity  of Riemann’s Fourier series. Annales de l'Institut Fourier, Volume 67 (2017) no. 5, pp. 2237-2264. doi : 10.5802/aif.3135. https://aif.centre-mersenne.org/articles/10.5802/aif.3135/

[1] Calderón, Alberto P.; Zygmund, Antoni Local properties of solutions of elliptic partial differential equations, Stud. Math., Volume 20 (1961), pp. 171-227 | DOI

[2] Chamizo, Fernando; Ubis, Adrián Some Fourier Series with gaps, J. Anal. Math., Volume 101 (2007), pp. 179-197 | DOI

[3] Chamizo, Fernando; Ubis, Adrián Multifractal behavior of polynomial Fourier series, Advances in Mathematics, Volume 250 (2014), pp. 1-34 | DOI

[4] Duistermaat, Johannes J. Selfsimilarity of “Riemann’s nondifferentiable function”, Nieuw Arch. Wiskd., Volume 9 (1991) no. 3, pp. 303-337

[5] Gerver, Joseph L. The differentiability of the Riemann function at certain rational multiples of π, Am. J. Math., Volume 92 (1970), pp. 33-55 | DOI

[6] Hardy, Godfrey H. Weierstrass’s non-differentiable function, American M. S. Trans., Volume 17 (1916), pp. 301-325

[7] Hardy, Godfrey H.; Littlewood, John E. Some problems of Diophantine approximation II: The trigonometrical series associated with the elliptic ϑ-functions, Acta Math., Volume 37 (1914), pp. 193-239 | DOI

[8] Itatsu, Seiichi Differentiability of Riemann’s function, Proc. Japan Acad. Ser. A Math. Sci., Volume 57 (1981), pp. 492-495 | DOI

[9] Jaffard, Stéphane The spectrum of singularities of Riemann’s function, Rev. Mat. Iberoam., Volume 12 (1996) no. 2, pp. 441-460 | DOI

[10] Jaffard, Stéphane; Mélot, Clothilde Wavelet analysis of fractal boundaries. I: Local exponents, Commun. Math. Phys., Volume 258 (2005) no. 3, pp. 513-539 | DOI

[11] Rivoal, Tanguy; Seuret, Stéphane Hardy-Littlewood Series and even continued fractions, J. Anal. Math., Volume 125 (2015) no. 1, pp. 175-225 | DOI

[12] Stein, Elias M. Harmonic Analysis: Real-variable methods, Orthogonality and Oscillatory Integrals, Princeton Mathematical Series, 43, Princeton University Press, 1993, xiii+695 pages

Cited by Sources: