On the expansions of real numbers in two integer bases
Annales de l'Institut Fourier, Volume 67 (2017) no. 5, pp. 2225-2235.

Let r and s be multiplicatively independent positive integers. We establish that the r-ary expansion and the s-ary expansion of an irrational real number, viewed as infinite words on {0,1,...,r-1} and {0,1,...,s-1}, respectively, cannot have simultaneously a low block complexity. In particular, they cannot be both Sturmian words.

Soient r et s deux entiers strictement positifs multiplicativement indépendants. Nous démontrons que les développements en base r et en base s d’un nombre irrationnel, vus comme des mots infinis sur les alphabets {0,1,...,r-1} et {0,1,...,s-1}, respectivement, ne peuvent pas avoir simultanément une trop faible complexité par blocs. En particulier, au plus l’un d’eux est un mot sturmien.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/aif.3134
Classification: 11A63, 68R15
Keywords: Combinatorics on words, Sturmian word, complexity, integer base expansion, continued fraction
Mot clés : Combinatoire des mots, mot sturmien, développement en base entière, fraction continue
Bugeaud, Yann 1; Kim, Dong Han 2

1 Université de Strasbourg, CNRS IRMA, UMR 7501 7 rue René Descartes 67084 Strasbourg (France)
2 Dongguk University – Seoul Department of Mathematics Education 30 Pildong-ro 1-gil, Jung-gu Seoul 04620 (Korea)
License: CC-BY-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AIF_2017__67_5_2225_0,
     author = {Bugeaud, Yann and Kim, Dong Han},
     title = {On the expansions of real numbers in two integer bases},
     journal = {Annales de l'Institut Fourier},
     pages = {2225--2235},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {67},
     number = {5},
     year = {2017},
     doi = {10.5802/aif.3134},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3134/}
}
TY  - JOUR
AU  - Bugeaud, Yann
AU  - Kim, Dong Han
TI  - On the expansions of real numbers in two integer bases
JO  - Annales de l'Institut Fourier
PY  - 2017
SP  - 2225
EP  - 2235
VL  - 67
IS  - 5
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3134/
DO  - 10.5802/aif.3134
LA  - en
ID  - AIF_2017__67_5_2225_0
ER  - 
%0 Journal Article
%A Bugeaud, Yann
%A Kim, Dong Han
%T On the expansions of real numbers in two integer bases
%J Annales de l'Institut Fourier
%D 2017
%P 2225-2235
%V 67
%N 5
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3134/
%R 10.5802/aif.3134
%G en
%F AIF_2017__67_5_2225_0
Bugeaud, Yann; Kim, Dong Han. On the expansions of real numbers in two integer bases. Annales de l'Institut Fourier, Volume 67 (2017) no. 5, pp. 2225-2235. doi : 10.5802/aif.3134. https://aif.centre-mersenne.org/articles/10.5802/aif.3134/

[1] Allouche, Jean-Paul; Shallit, Jeffrey Automatic Sequences. Theory, Applications, Generalizations., Cambridge University Press, 2003, xvi+571 pages | Zbl

[2] Bugeaud, Yann Approximation by Algebraic Numbers, Cambridge Tracts in Mathematics, 160, Cambridge University Press, 2004, xv+274 pages | Zbl

[3] Bugeaud, Yann Distribution Modulo One and Diophantine Approximation, Cambridge Tracts in Mathematics, 193, Cambridge University Press, 2012, xvi+300 pages | Zbl

[4] Bugeaud, Yann On the expansions of a real number to several integer bases, Rev. Mat. Iberoam., Volume 28 (2012) no. 4, pp. 931-946 | DOI | Zbl

[5] Bugeaud, Yann; Kim, Dong Han A new complexity function, repetitions in Sturmian words, and irrationality exponents of Sturmian numbers (Preprint)

[6] Bugeaud, Yann; Kim, Dong Han On the expansions of real numbers in two multiplicatively dependent bases, Bull. Aust. Math. Soc., Volume 95 (2017), pp. 373-383 | DOI | Zbl

[7] Cassaigne, Julien Sequences with grouped factors, DLT’97, Developments in Language Theory III (1998), pp. 211-222

[8] Evertse, Jan-Hendrik; Schlickewei, Hans Peter; Schmidt, Wolfgang M. Linear equations in variables which lie in a multiplicative group, Ann. Math., Volume 155 (2002) no. 3, pp. 807-836 | DOI | Zbl

[9] Morse, Marston; Hedlund, Gustav A. Symbolic dynamics II: Sturmian sequences, Am. J. Math., Volume 62 (1940), pp. 1-42 | DOI | Zbl

Cited by Sources: