Let and be multiplicatively independent positive integers. We establish that the -ary expansion and the -ary expansion of an irrational real number, viewed as infinite words on and , respectively, cannot have simultaneously a low block complexity. In particular, they cannot be both Sturmian words.
Soient et deux entiers strictement positifs multiplicativement indépendants. Nous démontrons que les développements en base et en base d’un nombre irrationnel, vus comme des mots infinis sur les alphabets et , respectivement, ne peuvent pas avoir simultanément une trop faible complexité par blocs. En particulier, au plus l’un d’eux est un mot sturmien.
Revised:
Accepted:
Published online:
Keywords: Combinatorics on words, Sturmian word, complexity, integer base expansion, continued fraction
Mot clés : Combinatoire des mots, mot sturmien, développement en base entière, fraction continue
@article{AIF_2017__67_5_2225_0, author = {Bugeaud, Yann and Kim, Dong Han}, title = {On the expansions of real numbers in two integer bases}, journal = {Annales de l'Institut Fourier}, pages = {2225--2235}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {67}, number = {5}, year = {2017}, doi = {10.5802/aif.3134}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3134/} }
TY - JOUR AU - Bugeaud, Yann AU - Kim, Dong Han TI - On the expansions of real numbers in two integer bases JO - Annales de l'Institut Fourier PY - 2017 SP - 2225 EP - 2235 VL - 67 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3134/ DO - 10.5802/aif.3134 LA - en ID - AIF_2017__67_5_2225_0 ER -
%0 Journal Article %A Bugeaud, Yann %A Kim, Dong Han %T On the expansions of real numbers in two integer bases %J Annales de l'Institut Fourier %D 2017 %P 2225-2235 %V 67 %N 5 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3134/ %R 10.5802/aif.3134 %G en %F AIF_2017__67_5_2225_0
Bugeaud, Yann; Kim, Dong Han. On the expansions of real numbers in two integer bases. Annales de l'Institut Fourier, Volume 67 (2017) no. 5, pp. 2225-2235. doi : 10.5802/aif.3134. https://aif.centre-mersenne.org/articles/10.5802/aif.3134/
[1] Automatic Sequences. Theory, Applications, Generalizations., Cambridge University Press, 2003, xvi+571 pages | Zbl
[2] Approximation by Algebraic Numbers, Cambridge Tracts in Mathematics, 160, Cambridge University Press, 2004, xv+274 pages | Zbl
[3] Distribution Modulo One and Diophantine Approximation, Cambridge Tracts in Mathematics, 193, Cambridge University Press, 2012, xvi+300 pages | Zbl
[4] On the expansions of a real number to several integer bases, Rev. Mat. Iberoam., Volume 28 (2012) no. 4, pp. 931-946 | DOI | Zbl
[5] A new complexity function, repetitions in Sturmian words, and irrationality exponents of Sturmian numbers (Preprint)
[6] On the expansions of real numbers in two multiplicatively dependent bases, Bull. Aust. Math. Soc., Volume 95 (2017), pp. 373-383 | DOI | Zbl
[7] Sequences with grouped factors, DLT’97, Developments in Language Theory III (1998), pp. 211-222
[8] Linear equations in variables which lie in a multiplicative group, Ann. Math., Volume 155 (2002) no. 3, pp. 807-836 | DOI | Zbl
[9] Symbolic dynamics II: Sturmian sequences, Am. J. Math., Volume 62 (1940), pp. 1-42 | DOI | Zbl
Cited by Sources: