Dans cet article, nous nous intéressons aux propriétés de convergence et de régularité locale des séries de Fourier lacunaires . Dans les années 1850, Riemann avait proposé la série comme exemple possible de fonction continue nulle part dérivable. La non-dérivabilité de et plus généralement sa régularité locale ont depuis lors été étudiées par de nombreux mathématiciens, soulevant des questions d’analyse harmonique, d’analyse complexe et d’approximation diophantienne. Nous considérons le cas , et trouvons un critère diophantien sur pour la convergence de . Nous étudions également la régularité locale de , en démontrant que les -exposants de dépendent de conditions diophantiennes sur . Les preuves utilisent des estimées locales sur la norme des sommes partielles de .
We are interested in the convergence and the local regularity of the lacunary Fourier series . In the 1850’s, Riemann introduced the series as a possible example of nowhere differentiable function, and the study of this function has drawn the interest of many mathematicians since then. We focus on the case when , and we prove that converges when satisfies a Diophantine condition. We also study the - local regularity of , proving that the local -norms of around a point behave differently around different , according again to Diophantine conditions on .
Révisé le :
Accepté le :
Publié le :
Keywords: Fourier series, Diophantine approximation, local regularity, Hausdorff dimension
Mot clés : Séries de Fourier, Approximation diophantienne, Régularité locale, Dimension de Hausdorff
Seuret, Stéphane 1 ; Ubis, Adrián 2
@article{AIF_2017__67_5_2237_0, author = {Seuret, St\'ephane and Ubis, Adri\'an}, title = {Local $L^2$-regularity of {Riemann{\textquoteright}s} {Fourier} series}, journal = {Annales de l'Institut Fourier}, pages = {2237--2264}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {67}, number = {5}, year = {2017}, doi = {10.5802/aif.3135}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3135/} }
TY - JOUR AU - Seuret, Stéphane AU - Ubis, Adrián TI - Local $L^2$-regularity of Riemann’s Fourier series JO - Annales de l'Institut Fourier PY - 2017 SP - 2237 EP - 2264 VL - 67 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3135/ DO - 10.5802/aif.3135 LA - en ID - AIF_2017__67_5_2237_0 ER -
%0 Journal Article %A Seuret, Stéphane %A Ubis, Adrián %T Local $L^2$-regularity of Riemann’s Fourier series %J Annales de l'Institut Fourier %D 2017 %P 2237-2264 %V 67 %N 5 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3135/ %R 10.5802/aif.3135 %G en %F AIF_2017__67_5_2237_0
Seuret, Stéphane; Ubis, Adrián. Local $L^2$-regularity of Riemann’s Fourier series. Annales de l'Institut Fourier, Tome 67 (2017) no. 5, pp. 2237-2264. doi : 10.5802/aif.3135. https://aif.centre-mersenne.org/articles/10.5802/aif.3135/
[1] Local properties of solutions of elliptic partial differential equations, Stud. Math., Volume 20 (1961), pp. 171-227 | DOI
[2] Some Fourier Series with gaps, J. Anal. Math., Volume 101 (2007), pp. 179-197 | DOI
[3] Multifractal behavior of polynomial Fourier series, Advances in Mathematics, Volume 250 (2014), pp. 1-34 | DOI
[4] Selfsimilarity of “Riemann’s nondifferentiable function”, Nieuw Arch. Wiskd., Volume 9 (1991) no. 3, pp. 303-337
[5] The differentiability of the Riemann function at certain rational multiples of , Am. J. Math., Volume 92 (1970), pp. 33-55 | DOI
[6] Weierstrass’s non-differentiable function, American M. S. Trans., Volume 17 (1916), pp. 301-325
[7] Some problems of Diophantine approximation II: The trigonometrical series associated with the elliptic -functions, Acta Math., Volume 37 (1914), pp. 193-239 | DOI
[8] Differentiability of Riemann’s function, Proc. Japan Acad. Ser. A Math. Sci., Volume 57 (1981), pp. 492-495 | DOI
[9] The spectrum of singularities of Riemann’s function, Rev. Mat. Iberoam., Volume 12 (1996) no. 2, pp. 441-460 | DOI
[10] Wavelet analysis of fractal boundaries. I: Local exponents, Commun. Math. Phys., Volume 258 (2005) no. 3, pp. 513-539 | DOI
[11] Hardy-Littlewood Series and even continued fractions, J. Anal. Math., Volume 125 (2015) no. 1, pp. 175-225 | DOI
[12] Harmonic Analysis: Real-variable methods, Orthogonality and Oscillatory Integrals, Princeton Mathematical Series, 43, Princeton University Press, 1993, xiii+695 pages
Cité par Sources :