Let be a finite extension of . By considering partially de Rham families, we establish a Colmez–Greenberg–Stevens formula (on Fontaine–Mazur -invariants) for (general) -dimensional semi-stable non-crystalline representations of the group . As an application, we prove local-global compatibility results for completed cohomology of quaternion Shimura curves, and in particular the equality of Fontaine–Mazur -invariants and Breuil’s -invariants, in critical case.
Soit une extension finie de . En étudiant des familles de représentations galoisiennes partiellement de de Rham, on donne une formule de Colmez–Greenberg–Stevens (concernant les invariants de Fontaine–Mazur) pour les représentations semi-stables non cristallines de dimension de . Comme application, on montre dans le cas critique des résultats de compatibilité local-global pour le -complété d’une courbe de Shimura quaternionique, et en particulier l’égalité des invariants de Fontaine–Mazur et Breuil.
Revised:
Accepted:
Published online:
Keywords: $\protect \mathcal{L}$-invariants, partially de Rham families, locally analytic representations, local-global compatibility
Mot clés : Invariants $\protect \mathcal{L}$, familles partiellement de de Rham, représentations localement analytiques, compatibilité local-global
@article{AIF_2017__67_4_1457_0, author = {Ding, Yiwen}, title = {$\protect \mathcal{L}$-invariants, partially de {Rham} families, and local-global compatibility}, journal = {Annales de l'Institut Fourier}, pages = {1457--1519}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {67}, number = {4}, year = {2017}, doi = {10.5802/aif.3115}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3115/} }
TY - JOUR AU - Ding, Yiwen TI - $\protect \mathcal{L}$-invariants, partially de Rham families, and local-global compatibility JO - Annales de l'Institut Fourier PY - 2017 SP - 1457 EP - 1519 VL - 67 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3115/ DO - 10.5802/aif.3115 LA - en ID - AIF_2017__67_4_1457_0 ER -
%0 Journal Article %A Ding, Yiwen %T $\protect \mathcal{L}$-invariants, partially de Rham families, and local-global compatibility %J Annales de l'Institut Fourier %D 2017 %P 1457-1519 %V 67 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3115/ %R 10.5802/aif.3115 %G en %F AIF_2017__67_4_1457_0
Ding, Yiwen. $\protect \mathcal{L}$-invariants, partially de Rham families, and local-global compatibility. Annales de l'Institut Fourier, Volume 67 (2017) no. 4, pp. 1457-1519. doi : 10.5802/aif.3115. https://aif.centre-mersenne.org/articles/10.5802/aif.3115/
[1] On overconvergent Hilbert modular cusp forms, -adic arithmetic of Hilbert modular forms (Astérisque), Volume 382, Société Mathématique de France, 2016, pp. 163-193
[2] Families of Galois representations and Selmer groups, Astérisque, 324, Société Mathématique de France, 2009, xii+314 pages
[3] On the variation of -modules over -adic families of automorphic forms, Boston University, USA (2013) (Ph. D. Thesis)
[4] Paraboline variation of -adic families of -modules, Compos. Math., Volume 153 (2017), pp. 132-174 | DOI
[5] Représentations -adiques et équations différentielles, Invent. Math., Volume 148 (2002) no. 2, pp. 219-284 | DOI
[6] Construction de -modules: représentations -adiques et -paires, Algebra Number Theory, Volume 2 (2008) no. 1, pp. 91-120 | DOI
[7] Multivariable -modules and locally analytic vectors, Duke Math. J., Volume 165 (2016) no. 18, pp. 3567-3595 | DOI
[8] Classicité de formes modulaires de Hilbert, -adic arithmetic of Hilbert modular forms (Astérisque), Volume 382, Société Mathématique de France, 2016, pp. 49-71
[9] Invariant et série spéciale -adique, Ann. Sci. Éc. Norm. Supér., Volume 37 (2004) no. 4, pp. 559-610 | DOI
[10] Conjectures de classicité sur les formes de Hilbert surconvergentes de pente finie (2010) (unpublished note)
[11] The emerging -adic Langlands programme, Proceedings of the international congress of mathematicians, Vol. II (2010), pp. 203-230
[12] Remarks on some locally -analytic representations of in the crystalline case, Non-abelian fundamental groups and Iwasawa theory (London Mathematical Society Lecture Note Series), Volume 393, Cambridge University Press, 2010, pp. 212-238
[13] Série spéciale -adique et cohomologie étale complétée, Représentations -adiques de groupes -adiques III: Méthodes globales et géométriques (Astérisque), Volume 331, Société Mathématique de France, 2010, pp. 65-115
[14] Vers le socle localement analytique pour , II, Math. Ann., Volume 361 (2015) no. 3-4, pp. 741-785 | DOI
[15] Socle localement analytique I, Ann. Inst. Fourier, Volume 66 (2016) no. 2, pp. 633-685 | DOI
[16] Une interprétation modulaire de la variété trianguline (2015) (https://arxiv.org/abs/1411.7260v2, to appear in Math. Ann.)
[17] Eigenvarieties, -functions and Galois representations (London Mathematical Society Lecture Note Series), Volume 320, Cambridge University Press, 2007, pp. 59-120
[18] Sur les représentations -adiques associées aux formes modulaires de Hilbert, Ann. Sci. Éc. Norm. Supér., Volume 19 (1986) no. 3, pp. 409-468 | DOI
[19] Familles -adiques de formes automorphes pour , J. Reine Angew. Math, Volume 570 (2004), pp. 143-217
[20] Une correspondance de Jacquet-Langlands -adique, Duke Math. J., Volume 126 (2005) no. 1, pp. 161-194 | DOI
[21] On the infinite fern of Galois representations of unitary type, Ann. Sci. Éc. Norm. Supér., Volume 44 (2011) no. 6, pp. 963-1019 | DOI
[22] Invariants et dérivées de valeurs propres de Frobenius, Représentations -adiques de groupes -adiques III: Méthodes globales et géométriques (Astérisque), Volume 331, Société Mathématique de France, 2010, pp. 13-28
[23] Formes modulaires -adiques sur les courbes de Shimura unitaires et compatibilité local-global (2014) (https://sites.google.com/site/yiwendingmath/fmclg.pdf)
[24] -invariants and local-global compatibility for , Forum Math. Sigma, Volume 4 (2016) (Article ID e13, 49 p., electronic only) | DOI
[25] Locally analytic vectors in representations of locally -adic analytic groups (2004) (https://arxiv.org/abs/math/0405137, to appear in Mem. Am. Math. Soc.)
[26] Jacquet modules of locally analytic representations of -adic reductive groups I. Construction and first properties, Ann. Sci. Éc. Norm. Supér., Volume 39 (2006) no. 5, pp. 775-839 | DOI
[27] On the interpolation of systems of eigenvalues attached to automorphic Hecke eigenforms, Invent. Math., Volume 164 (2006) no. 1, pp. 1-84 | DOI
[28] Jacquet modules of locally analytic representations of -adic reductive groups II. The relation to parabolic induction (2007) (to appear in J. Inst. Math. Jussieu)
[29] -adic -functions and -adic periods of modular forms, Invent. Math., Volume 111 (1993) no. 2, pp. 407-447 | DOI
[30] Slope filtrations for relative Frobenius, Représentation p-adiques de groupes p-adiques I. Représentations galoisiennes et ()-modules (Astérisque), Volume 319, Société Mathématique de France, 2008, pp. 259-301
[31] Cohomology of arithmetic families of -modules, J. Am. Math. Soc., Volume 27 (2014) no. 4, pp. 1043-1115 | DOI
[32] Triangulation of refined families, Comment. Math. Helv., Volume 90 (2015) no. 4, pp. 831-904 | DOI
[33] Classification of two-dimensional split trianguline representations of -adic fields, Compos. Math., Volume 145 (2009) no. 4, pp. 865-914 | DOI
[34] Deformations of trianguline -pairs and Zariski density of two dimensional crystalline representations, J. Math. Sci., Tokyo, Volume 20 (2013) no. 4, pp. 461-568
[35] Completed cohomology of Shimura curves and a -adic Jacquet-Langlands correspondence, Math. Ann., Volume 355 (2013) no. 2, pp. 729-763 | DOI
[36] On Jordan–Hölder series of some locally analytic representations, J. Am. Math. Soc., Volume 28 (2015) no. 1, pp. 99-157 | DOI
[37] The -invariant, the dual -invariant, and families, Ann. Math. Qué., Volume 40 (2016) no. 1, pp. 159-165 | DOI
[38] Hilbert modular forms and -adic Hodge theory, Compos. Math., Volume 145 (2009) no. 5, pp. 1081-1113 | DOI
[39] Banach space representations and Iwasawa theory, Isr. J. Math., Volume 127 (2002) no. 1, pp. 359-380 | DOI
[40] Algebras of -adic distributions and admissible representations, Invent. Math., Volume 153 (2003) no. 1, pp. 145-196 | DOI
[41] Représentations -adiques de et catégories dérivées, Isr. J. Math., Volume 176 (2010) no. 1, pp. 307-361 | DOI
[42] Interpolating periods (2013) (https://arxiv.org/abs/1305.2872)
[43] -adic cohomology and classicality of overconvergent Hilbert modular forms (to appear in Astérisque)
[44] -invariants and logarithm derivatives of eigenvalues of Frobenius, Sci. China, Math., Volume 57 (2014) no. 8, pp. 1587-1604 | DOI
Cited by Sources: