A family of bi-differential operators from into which are covariant for the projective action of the group on is constructed, generalizing both the transvectants and the Rankin–Cohen brackets (case ).
On construit une famille d’opérateurs bi-différentiels de dans qui sont covariants pour l’action projective du groupe sur . Dans le cas , cette construction fournit une nouvelle approche des transvectants et des crochets de Rankin–Cohen.
Revised:
Accepted:
Published online:
Keywords: Covariant differential operators, Knapp–Stein intertwining operators, Zeta functional equation, transvectants, Rankin–Cohen brackets
Mot clés : Opérateurs différentiels covariants, opérateurs d’entrelacement de Knapp–Stein, équation fonctionnelle de Zeta, transvectants, crochets de Rankin–Cohen
@article{AIF_2017__67_4_1427_0, author = {Clerc, Jean-Louis}, title = {Covariant bi-differential operators on matrix space}, journal = {Annales de l'Institut Fourier}, pages = {1427--1455}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {67}, number = {4}, year = {2017}, doi = {10.5802/aif.3114}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3114/} }
TY - JOUR AU - Clerc, Jean-Louis TI - Covariant bi-differential operators on matrix space JO - Annales de l'Institut Fourier PY - 2017 SP - 1427 EP - 1455 VL - 67 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3114/ DO - 10.5802/aif.3114 LA - en ID - AIF_2017__67_4_1427_0 ER -
%0 Journal Article %A Clerc, Jean-Louis %T Covariant bi-differential operators on matrix space %J Annales de l'Institut Fourier %D 2017 %P 1427-1455 %V 67 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3114/ %R 10.5802/aif.3114 %G en %F AIF_2017__67_4_1427_0
Clerc, Jean-Louis. Covariant bi-differential operators on matrix space. Annales de l'Institut Fourier, Volume 67 (2017) no. 4, pp. 1427-1455. doi : 10.5802/aif.3114. https://aif.centre-mersenne.org/articles/10.5802/aif.3114/
[1] Positivity of zeta distributions and small unitary representations, The ubiquitous heat kernel (Contemporary Mathematics), Volume 398, American Mathematical Society, 2006, pp. 1-46
[2] Singular invariant trilinear forms and covariant (bi)-differential operators under the conformal group, J. Funct. Anal., Volume 262 (2012) no. 10, pp. 4341-4376 | DOI
[3] The functional equation of zeta distributions associated with non-Euclidean Jordan algebras., Can. J. Math., Volume 58 (2006) no. 1, pp. 3-22 | DOI
[4] Local zeta functions attached to the minimal spherical series for a class of symmetric spaces, Mem. Am. Math. Soc., 821, American Mathematical Society, 2005, 233 pages
[5] Singular conformally invariant trilinear forms. II: The higher multiplicity cases (to appear in Transform. Groups)
[6] Ring structures for holomorphic discrete series and Rankin-Cohen brackets, J. Lie Theory, Volume 17 (2007) no. 2, pp. 283-305
[7] The Lie theory of the Rankin-Cohen brackets and allied bi-differential operators, Adv. Math., Volume 207 (2006) no. 2, pp. 484-531 | DOI
[8] Analysis on symmetric cones, Oxford Mathematical Publications, Clarendon Press, 1994, xii+382 pages
[9] Fourier analysis on matrix space, Mem. Am. Math. Soc., 108, American Mathematical Society, 1971, 77 pages
[10] Holonomic systems of Gegenbauer polynomials of matrix arguments related with Siegel modular forms, J. Math. Soc. Japan, Volume 64 (2012) no. 1, pp. 273-316 | DOI
[11] Representation theory of semisimple groups, an overview based on examples, Princeton Mathematical Series, 36, Princeton University Press, 1986, xvii+773 pages
[12] Vector-valued covariant differential operators for the Möbius transformation, Lie theory and its applications in physics (Springer Proceedings in Mathematics & Statistics), Volume 111, Springer, 2014, pp. 67-85
[13] Differential symmetry breaking operators. II: Rankin-Cohen operators for symmetric pairs, Sel. Math., Volume 22 (2016) no. 2, pp. 847-911 | DOI
[14] Décomposition orbitale des espaces préhomogènes réguliers de type parabolique commutatif et application, C. R. Acad. Sci., Paris, Volume 303 (1986), pp. 495-498
[15] Classical Invariant Theory, London Mathematical Society Student Texts, 44, Cambridge University Press, 1999, xxi+280 pages
[16] Generalized Transvectants and Siegel modular forms, Adv. Appl. Math., Volume 38 (2007) no. 3, pp. 404-418 | DOI
[17] Tensor products of holomorphic representations and bilinear differential operators, J. Funct. Anal., Volume 210 (2004) no. 1, pp. 171-192 | DOI
[18] On zeta functions associated with prehomogeneous vector spaces, Ann. Math., Volume 100 (1974), pp. 131-170 | DOI
[19] Analysis in matrix spaces and some new representations of , Ann. Math., Volume 86 (1967), pp. 461-490 | DOI
[20] Fourier analysis in number fields and Hecke’s zeta-functions, Princeton University, USA (1950) (Ph. D. Thesis)
[21] Algebras of symbols and modular forms, J. Anal. Math., Volume 68 (1996), pp. 121-143 | DOI
[22] Modular forms and differential operators, Proc. Indian Acad. Sci., Volume 104 (1994) no. 1, pp. 57-75
[23] Rankin-Cohen brackets, transvectants and covariant differential operators, Math. Z., Volume 264 (2010) no. 3, pp. 513-519 | DOI
Cited by Sources: