Stability is not open
Annales de l'Institut Fourier, Volume 60 (2010) no. 7, pp. 2449-2459.

We give an example of a symplectic manifold with a stable hypersurface such that nearby hypersurfaces are typically unstable.

Nous donnons un exemple d’une variété symplectique contenant une hypersurface stable telle que les hypersurfaces voisines sont instables.

Received:
Accepted:
DOI: 10.5802/aif.2614
Classification: 53D40,  53D25
Keywords: Stability, Hamiltonian structure, characteristic foliation
Cieliebak, Kai 1; Frauenfelder, Urs 2; Paternain, Gabriel P. 3

1 Ludwig-Maximilians-Universität Mathematisches Institut 80333 München (Germany)
2 Seoul National University Department of Mathematics Research Institute of Mathematics 151-747 Seoul (South Korea)
3 University of Cambridge Department of Pure Mathematics and Mathematical Statistics Cambridge CB3 0WB (UK)
@article{AIF_2010__60_7_2449_0,
     author = {Cieliebak, Kai and Frauenfelder, Urs and Paternain, Gabriel P.},
     title = {Stability is not open},
     journal = {Annales de l'Institut Fourier},
     pages = {2449--2459},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {60},
     number = {7},
     year = {2010},
     doi = {10.5802/aif.2614},
     mrnumber = {2849269},
     zbl = {1235.53089},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2614/}
}
TY  - JOUR
TI  - Stability is not open
JO  - Annales de l'Institut Fourier
PY  - 2010
DA  - 2010///
SP  - 2449
EP  - 2459
VL  - 60
IS  - 7
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2614/
UR  - https://www.ams.org/mathscinet-getitem?mr=2849269
UR  - https://zbmath.org/?q=an%3A1235.53089
UR  - https://doi.org/10.5802/aif.2614
DO  - 10.5802/aif.2614
LA  - en
ID  - AIF_2010__60_7_2449_0
ER  - 
%0 Journal Article
%T Stability is not open
%J Annales de l'Institut Fourier
%D 2010
%P 2449-2459
%V 60
%N 7
%I Association des Annales de l’institut Fourier
%U https://doi.org/10.5802/aif.2614
%R 10.5802/aif.2614
%G en
%F AIF_2010__60_7_2449_0
Cieliebak, Kai; Frauenfelder, Urs; Paternain, Gabriel P. Stability is not open. Annales de l'Institut Fourier, Volume 60 (2010) no. 7, pp. 2449-2459. doi : 10.5802/aif.2614. https://aif.centre-mersenne.org/articles/10.5802/aif.2614/

[1] Anosov, D. V.; Sinaĭ, Ja. G. Certain smooth ergodic systems, Uspehi Mat. Nauk, Volume 22 (1967) no. 5 (137), pp. 107-172 | MR | Zbl

[2] Bourgeois, F.; Eliashberg, Y.; Hofer, H.; Wysocki, K.; Zehnder, E. Compactness results in symplectic field theory, Geom. Topol., Volume 7 (2003), pp. 799-888 | DOI | MR | Zbl

[3] Cieliebak, Kai; Frauenfelder, Urs Adrian A Floer homology for exact contact embeddings, Pacific J. Math., Volume 239 (2009) no. 2, pp. 251-316 | DOI | MR | Zbl

[4] Cieliebak, Kai; Frauenfelder, Urs Adrian; Paternain, Gabriel P. Symplectic topology of Mañé’s critical values, Geometry and Topology, Volume 14 (2010), pp. 1765-1870 | DOI | MR | Zbl

[5] Cieliebak, Kai; Mohnke, K. Compactness for punctured holomorphic curves, J. Symplectic Geom., Volume 3 (2005) no. 4, pp. 589-654 (Conference on Symplectic Topology) | MR | Zbl

[6] Cieliebak, Kai; Volkov, E. First steps in stable Hamiltonian topology (2010) (arXiv:1003.5084)

[7] Eliashberg, Y.; Givental, A.; Hofer, H. Introduction to symplectic field theory, Geom. Funct. Anal. (2000) no. Special Volume, Part II, pp. 560-673 (GAFA 2000 (Tel Aviv, 1999)) | MR | Zbl

[8] Feres, Renato Geodesic flows on manifolds of negative curvature with smooth horospheric foliations, Ergodic Theory Dynam. Systems, Volume 11 (1991) no. 4, pp. 653-686 | DOI | MR | Zbl

[9] Hasselblatt, Boris Horospheric foliations and relative pinching, J. Differential Geom., Volume 39 (1994) no. 1, pp. 57-63 | MR | Zbl

[10] Hasselblatt, Boris Regularity of the Anosov splitting and of horospheric foliations, Ergodic Theory Dynam. Systems, Volume 14 (1994) no. 4, pp. 645-666 | DOI | MR | Zbl

[11] Hirsch, M. W.; Pugh, C. C.; Shub, M. Invariant manifolds, Lecture Notes in Mathematics, Vol. 583, Springer-Verlag, Berlin, 1977 | MR | Zbl

[12] Hofer, Helmut; Zehnder, Eduard Symplectic invariants and Hamiltonian dynamics, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Verlag, Basel, 1994 | MR | Zbl

[13] Kanai, Masahiko Differential-geometric studies on dynamics of geodesic and frame flows, Japan. J. Math. (N.S.), Volume 19 (1993) no. 1, pp. 1-30 | MR | Zbl

[14] Katok, Anatole; Hasselblatt, Boris Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications, Volume 54, Cambridge University Press, Cambridge, 1995 (With a supplementary chapter by Katok and Leonardo Mendoza) | MR | Zbl

[15] Parry, William Synchronisation of canonical measures for hyperbolic attractors, Comm. Math. Phys., Volume 106 (1986) no. 2, pp. 267-275 | DOI | MR | Zbl

[16] Paternain, Gabriel P. Geodesic flows, Progress in Mathematics, Volume 180, Birkhäuser Boston Inc., Boston, MA, 1999 | MR | Zbl

[17] Plante, Joseph F. Anosov flows, Amer. J. Math., Volume 94 (1972), pp. 729-754 | DOI | MR | Zbl

[18] Sadovskaya, Victoria On uniformly quasiconformal Anosov systems, Math. Res. Lett., Volume 12 (2005) no. 2-3, pp. 425-441 | MR | Zbl

Cited by Sources: