An interpolation theorem in toric varieties
Annales de l'Institut Fourier, Volume 58 (2008) no. 4, pp. 1371-1381.

In the spirit of a theorem of Wood, we give necessary and sufficient conditions for a family of germs of analytic hypersurfaces in a smooth projective toric variety X to be interpolated by an algebraic hypersurface with a fixed class in the Picard group of X.

Dans la lignée d’un théorème de Wood, on donne des conditions nécessaires et suffisantes pour qu’une famille de germes d’hypersurfaces analytiques d’une variété torique projective lisse X s’interpole par une hypersurface algébrique de classe de Picard donnée.

DOI: 10.5802/aif.2387
Classification: 14M25, 32B10
Keywords: Toric varieties, interpolation, trace, residues, resultants
Mot clés : variétés toriques, interpolation, trace, résidus, résultants
Weimann, Martin 1

1 22 rue Jean Prévost 38000 Grenoble (France)
@article{AIF_2008__58_4_1371_0,
     author = {Weimann, Martin},
     title = {An interpolation theorem in toric varieties},
     journal = {Annales de l'Institut Fourier},
     pages = {1371--1381},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {58},
     number = {4},
     year = {2008},
     doi = {10.5802/aif.2387},
     mrnumber = {2427963},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2387/}
}
TY  - JOUR
AU  - Weimann, Martin
TI  - An interpolation theorem in toric varieties
JO  - Annales de l'Institut Fourier
PY  - 2008
SP  - 1371
EP  - 1381
VL  - 58
IS  - 4
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2387/
DO  - 10.5802/aif.2387
LA  - en
ID  - AIF_2008__58_4_1371_0
ER  - 
%0 Journal Article
%A Weimann, Martin
%T An interpolation theorem in toric varieties
%J Annales de l'Institut Fourier
%D 2008
%P 1371-1381
%V 58
%N 4
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2387/
%R 10.5802/aif.2387
%G en
%F AIF_2008__58_4_1371_0
Weimann, Martin. An interpolation theorem in toric varieties. Annales de l'Institut Fourier, Volume 58 (2008) no. 4, pp. 1371-1381. doi : 10.5802/aif.2387. https://aif.centre-mersenne.org/articles/10.5802/aif.2387/

[1] Abel, N. H. Mémoire sur une propriété générale d’une classe trés étendue de fonctions trancendantes, note présentée à L’Académie des sciences à Paris le 30 Octobre 1826, Oeuvres complètes de Niels Henrik Abel, Christiania, Volume 1 (1881), pp. 145-211

[2] Andersson, M. Residue currents and ideal of holomorphic functions, Bull. Sci. math. (2004) no. 128, pp. 481-512 | DOI | MR | Zbl

[3] Berenstein, C. A.; Yger, A. Residue calculus and effective Nullstellensatz, in American Journal of Mathematics, Volume 121 (1999) no. 4, pp. 723-796 | DOI | MR | Zbl

[4] Bernstein, D. The number of roots of a system of equations, Funct. Anal. Appl., Volume 9 (1975) no. 2, pp. 183-185 | MR | Zbl

[5] Bloch, S.; Gieseker, D. The positivity of the Chern Classes of an ample Vector Bundle, Inventiones math., Volume 12 (1971), pp. 112-117 | DOI | MR | Zbl

[6] Cattani, E.; Dickenstein, A. A global view of residues in the torus, Journal of Pure and Applied Algebra, Volume 117 & 118 (1997), pp. 119-144 | DOI | MR | Zbl

[7] Danilov, V. The geometry of toric varieties, Russian Math. Surveys, Volume 33 (1978), pp. 97-154 | DOI | MR | Zbl

[8] Ewald, G. Combinatorial convexity and algebraic geometry, Graduate Texts in Mathematics, 168, Springer-Verlag, New York, 1996 | MR | Zbl

[9] Fulton, W. Introduction to toric varieties, Princeton U. Press, Princeton, NJ, 1993 | MR | Zbl

[10] Gelfand, I. M.; Kapranov, M. M.; Zelevinsky, A. V. Discriminants, resultants, and multidimensional determinants, Mathematics: Theory & Applications, Birkhauser, Boston, 1994 | MR | Zbl

[11] Griffiths, P. A. Variations on a theorem of Abel, Inventiones math., Volume 35 (1976), pp. 321-390 | DOI | MR | Zbl

[12] Griffiths, P. A.; Harris, J. Principles of Algebraic Geometry, Pure and applied mathematics, Wiley-Intersciences, 1978 | MR | Zbl

[13] Henkin, G.; Passare, M. Abelian differentials on singular varieties and variation on a theorem of Lie-Griffiths, Inventiones math., Volume 135 (1999), pp. 297-328 | DOI | MR | Zbl

[14] Khovanskii, A. Newton polyedra and the Euler-Jacobi formula, Russian Math. Surveys, Volume 33 (1978), pp. 237-238 | DOI | MR | Zbl

[15] Pedersen, P.; Sturmfels, B. Product formulas for resultants and Chow forms, Math. Z., Volume 214 (1993) no. 3, pp. 377-396 | DOI | MR | Zbl

[16] Shchuplev, A. Toric varieties and residues, Doctoral thesis, Stockholm University, 2007

[17] Vidras, A.; Yger, A. On some generalizations of Jacobi’s residue formula, Ann. scient. Ec. Norm. Sup, 4 ème série, Volume 34 (2001), pp. 131-157 | Numdam | Zbl

[18] Weimann, M. Concavity, Abel-transform and the Abel-inverse theorem in smooth complete toric varieties (arXiv ref: math.CV/0705.0247)

[19] Weimann, M. La trace en géométrie projective et torique, Thesis, Université Bordeaux, 2006

[20] Weimann, M. Trace et Calcul résiduel : une nouvelle version du théorème d’Abel-inverse et formes abéliennes, Annales de la faculté des sciences de Toulouse Sér. 6, Volume 16 (2007) no. 2, pp. 397-424 | Numdam

[21] Wood, J. A. A simple criterion for an analytic hypersurface to be algebraic, Duke Mathematical Journal, Volume 51 (1984) no. 1, pp. 235-237 | DOI | MR | Zbl

Cited by Sources: