Stable norms of non-orientable surfaces
Annales de l'Institut Fourier, Volume 58 (2008) no. 4, pp. 1337-1369.

We study the stable norm on the first homology of a closed non-orientable surface equipped with a Riemannian metric. We prove that in every conformal class there exists a metric whose stable norm is polyhedral. Furthermore the stable norm is never strictly convex if the first Betti number of the surface is greater than two.

Nous étudions la norme stable sur le premier groupe d’homologie d’une surface fermée et non-orientable munie d’une métrique riemannienne. Nous montrons qu’il existe dans chaque classe conforme une métrique dont la norme stable est polyèdrale. De plus, la norme stable est strictement convexe dès que le premier nombre de Betti est au moins trois.

DOI: 10.5802/aif.2386
Classification: 37J50, 53C20, 53C23
Keywords: Minimizing measures, non-orientable surface, stable norm
Mot clés : surface non-orientable, norme stable
Balacheff, Florent 1; Massart, Daniel 2

1 Université de Neuchâtel Institut de mathématiques Rue Émile Argand 11 CP 158 2009 Neuchâtel (Switzerland)
2 Université Montpellier II Institut de Mathématiques et de Modélisation de Montpellier UMR 5149 Case Courier 051 Place Eugène Bataillon 34095 Montpellier Cedex 5 (France)
@article{AIF_2008__58_4_1337_0,
     author = {Balacheff, Florent and Massart, Daniel},
     title = {Stable norms of non-orientable surfaces},
     journal = {Annales de l'Institut Fourier},
     pages = {1337--1369},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {58},
     number = {4},
     year = {2008},
     doi = {10.5802/aif.2386},
     mrnumber = {2427962},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2386/}
}
TY  - JOUR
AU  - Balacheff, Florent
AU  - Massart, Daniel
TI  - Stable norms of non-orientable surfaces
JO  - Annales de l'Institut Fourier
PY  - 2008
SP  - 1337
EP  - 1369
VL  - 58
IS  - 4
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2386/
DO  - 10.5802/aif.2386
LA  - en
ID  - AIF_2008__58_4_1337_0
ER  - 
%0 Journal Article
%A Balacheff, Florent
%A Massart, Daniel
%T Stable norms of non-orientable surfaces
%J Annales de l'Institut Fourier
%D 2008
%P 1337-1369
%V 58
%N 4
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2386/
%R 10.5802/aif.2386
%G en
%F AIF_2008__58_4_1337_0
Balacheff, Florent; Massart, Daniel. Stable norms of non-orientable surfaces. Annales de l'Institut Fourier, Volume 58 (2008) no. 4, pp. 1337-1369. doi : 10.5802/aif.2386. https://aif.centre-mersenne.org/articles/10.5802/aif.2386/

[1] Babenko, I.; Balacheff, F. Sur la forme de la boule unité de la norme stable unidimensionnelle, Manuscripta Math., Volume 119 (2006) no. 3, pp. 347-358 | DOI | MR | Zbl

[2] Bangert, V. Minimal geodesics, Ergodic Theory Dynam. Systems, Volume 10 (1990) no. 2, pp. 263-286 | DOI | MR | Zbl

[3] Bonahon, F. Geodesic laminations on surfaces, Laminations and foliations in dynamics, geometry and topology (Stony Brook, NY, 1998) (2001), pp. 1-37 Contemp. Math., 269, Amer. Math. Soc., Providence, RI (2001) | MR | Zbl

[4] Carneiro, M. J. Dias On minimizing measures of the action of autonomous Lagrangians, Nonlinearity, Volume 8 (1995) no. 6, pp. 1077-1085 | DOI | MR | Zbl

[5] Contreras, G.; Macarini, L.; Paternain, Gabriel P. Periodic orbits for exact magnetic flows on surfaces, Int. Math. Res. Not. (2004) no. 8, pp. 361-387 | DOI | MR | Zbl

[6] Dieudonné, J. Eléments d’Analyse, Cahiers Scientifiques, 2, Fasc. XXXI Gauthier-Villars, 1968

[7] Farkas, H.; Kra, I. Riemann surfaces, Graduate Texts in Mathematics, 71, Springer-Verlag, New York, 1992 | MR | Zbl

[8] Fathi, A. Sur la convergence du semi-groupe de Lax-Oleinik, C. R. Acad. Sci. Paris Sér. I Math., Volume 327 (1998) no. 3, pp. 267-270 | DOI | MR | Zbl

[9] Federer, H. Real flat chains, cochains and variational problems, Indiana Univ. Math. J., Volume 24 (1974), pp. 351-407 | DOI | MR | Zbl

[10] Gromov, M. Structures métriques pour les variétés riemanniennes, Edited by J. Lafontaine and P. Pansu. Textes Mathématiques, 1. CEDIC, Paris, 1981 | MR | Zbl

[11] Mañé, R. Introdução à teoria ergódica, Projeto Euclides, 14, Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 1983 | MR | Zbl

[12] Mañé, R. On the minimizing measures of Lagrangian dynamical systems, Nonlinearity, Volume 5 (1992) no. 3, pp. 623-638 | DOI | MR | Zbl

[13] Massart, D. Norme stable des surfaces, Thèse de doctorat. Ecole Normale Supérieure de Lyon, 1996

[14] Massart, D. Stable norms of surfaces: local structure of the unit ball of rational directions, Geom. Funct. Anal., Volume 7 (1997) no. 6, pp. 996-1010 | DOI | MR | Zbl

[15] Mather, John N. Action minimizing invariant measures for positive definite Lagrangian systems, Math. Z., Volume 207 (1991), pp. 169-207 | DOI | MR | Zbl

[16] McShane, G.; Rivin, I. Simple curves on hyperbolic tori, C. R. Acad. Sci. Paris Sér. I Math., Volume 320 (1995) no. 12, pp. 1523-1528 | MR | Zbl

[17] Scharlemann, M. The complex of curves on nonorientable surfaces, J. London Math. Soc., Volume 25 (1982) no. 1, pp. 171-184 | DOI | MR | Zbl

[18] Schwartzman, S. Asymptotic cycles, Ann. of Math., Volume 66 (1957), pp. 270-284 | DOI | MR | Zbl

Cited by Sources: