Jensen measures and unbounded B-regular domains in C n
Annales de l'Institut Fourier, Volume 58 (2008) no. 4, pp. 1383-1406.

Following Sibony, we say that a bounded domain Ω in C n is B-regular if every continuous real valued function on the boundary of Ω can be extended continuously to a plurisubharmonic function on Ω. The aim of this paper is to study an analogue of this concept in the category of unbounded domains in C n . The use of Jensen measures relative to classes of plurisubharmonic functions plays a key role in our work

En suivant Sibony, nous dirons qu’un domaine borne Ω de C n est B- régulier si toute fonction continue à valeurs réelles sur la frontière de Ω peut être prolongée continûment à une fonction plurisousharmonique sur Ω. Le but de ce papier est d’étudier une notion analogue dans la catégorie des domaines non bornés dans C n . L’usage des mesures de Jensen relatives à des classes de fonctions plurisousharmoniques jouent un rôle clé dans notre travail.

DOI: 10.5802/aif.2388
Classification: 32T27
Keywords: Plurisubharmonic function, Dirichlet-Bremermann problem, $B$-regular domain
Mot clés : fonction plurisousharmonique, Dirichlet-Bremermann problème, domaine $B$-régulier

Nguyen, Quang Dieu 1, 2; Hung, Dau Hoang 3

1 Current address: Seaoul National Universiy Department of Mathematics 151-742 Seoul (Korea)
2 University of Education (Dai Hoc Su Pham Hanoi) Department of Mathematics 136 Xuan Thuy, Cau Giay Hanoi (Vietnam)
3 Vinh University Department of Mathematics Vinh (Vietnam)
@article{AIF_2008__58_4_1383_0,
     author = {Nguyen, Quang Dieu and Hung, Dau Hoang},
     title = {Jensen measures and unbounded $B-$regular domains in ${\mathbf{C}}^n$},
     journal = {Annales de l'Institut Fourier},
     pages = {1383--1406},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {58},
     number = {4},
     year = {2008},
     doi = {10.5802/aif.2388},
     mrnumber = {2427964},
     zbl = {1156.32020},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2388/}
}
TY  - JOUR
AU  - Nguyen, Quang Dieu
AU  - Hung, Dau Hoang
TI  - Jensen measures and unbounded $B-$regular domains in ${\mathbf{C}}^n$
JO  - Annales de l'Institut Fourier
PY  - 2008
SP  - 1383
EP  - 1406
VL  - 58
IS  - 4
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2388/
DO  - 10.5802/aif.2388
LA  - en
ID  - AIF_2008__58_4_1383_0
ER  - 
%0 Journal Article
%A Nguyen, Quang Dieu
%A Hung, Dau Hoang
%T Jensen measures and unbounded $B-$regular domains in ${\mathbf{C}}^n$
%J Annales de l'Institut Fourier
%D 2008
%P 1383-1406
%V 58
%N 4
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2388/
%R 10.5802/aif.2388
%G en
%F AIF_2008__58_4_1383_0
Nguyen, Quang Dieu; Hung, Dau Hoang. Jensen measures and unbounded $B-$regular domains in ${\mathbf{C}}^n$. Annales de l'Institut Fourier, Volume 58 (2008) no. 4, pp. 1383-1406. doi : 10.5802/aif.2388. https://aif.centre-mersenne.org/articles/10.5802/aif.2388/

[1] Bedford, E.; Taylor, A. A new capacity for plurisubharmonic functions, Acta Math., Volume 149 (1982), pp. 1-40 | DOI | MR | Zbl

[2] Blocki, Z. The complex Monge-Ampère operator in hyperconvex domains, Ann. Scuola Norm. Sup. Pisa Cl. Sci., Volume 23 (1996), pp. 721-747 | Numdam | MR | Zbl

[3] Bremermann, H. On a generalized Dirichlet problem for plurisubharmonic functions and pseudo-convex domains. Characterization of Silov boundaries, Trans. Amer. Math. Soc., Volume 91 (1959), pp. 246-276 | MR | Zbl

[4] Brown, A.; Pearcy, C. An Introduction to Analysis, Graduate Texts in Mathematics, 154, Springer-Verlag, 1995 | MR | Zbl

[5] Edwars, D.; Scott-Foresman Choquet boundary theory for certain spaces of lower semicontinuous functions, Function algebras (1966), pp. 300-309 | MR | Zbl

[6] Fornaess, J.; Wiegerinck, J. Approximation of plurisubharmonic functions, Ark. Mat., Volume 27 (1989), pp. 257-272 | DOI | MR | Zbl

[7] Hayman, K. W. K.; Kennedy, B. Subharmonic function, London Mathematical Society Monographs, I, Academic Press, Harcourt Brace Jovanovich, London-New York, 1976 no. 9, pp. xvii+284 | Zbl

[8] Klimek, Maciej Pluripotential theory, London Mathematical Society Monographs. New Series, 6, The Clarendon Press Oxford University Press, New York, 1991 (Oxford Science Publications) | MR | Zbl

[9] Nguyen, Q. D. Approximation of plurisubharmonic functions on bounded domains in C n , Michigan Math. J., Volume 54 (2006) no. 3, pp. 697-711 | DOI | MR | Zbl

[10] Nguyen, Q. D.; Dung, N. T.; Hung, D. H. B-regularity of certain domains in C n ,, Annales Polon. Math., Volume 86 (2005) no. 2, pp. 137-152 | DOI | MR | Zbl

[11] Nguyen, Q. D.; Wikström, F. Jensen measures and approximation of plurisubharmonic functions, Michigan Math. J., Volume 53 (2005), pp. 529-544 | DOI | MR | Zbl

[12] Rudin, W. Real and Complex Analysis, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966 | MR | Zbl

[13] Shcherbina, N.; Tomassini, G. The Dirichlet problem for Levi-flat graphs over unbounded domains, Internat. Math. Res. Notices, Volume 3 (1999), pp. 111-151 | DOI | MR | Zbl

[14] Sibony, N. Une classe des domaines pseudoconvex, Duke Math. J., Volume 55 (1987), pp. 299-319 | DOI | MR | Zbl

[15] Simioniuc, A.; Tomassini, G. The Bremermann-Dirichlet problem for unbounded domains in C n (http://it.arxiv.org/math/pdf/0702/0702179v1.pdf, preprint, 2007, to be published in Manuscripta Mat)

[16] Walsh, J. Continuity of envelopes of plurisubharmonic functions, J. Math. Mech., Volume 18 (1968/1969), pp. 143-148 | MR | Zbl

[17] Wikström, J. Jensen measures and boundary values of plurisubharmonic functions, Ark. Mat., Volume 39 (2001), pp. 181-200 | DOI | MR | Zbl

Cited by Sources: