An interpolation theorem in toric varieties
[Un théorème d’interpolation dans les variétés toriques]
Annales de l'Institut Fourier, Tome 58 (2008) no. 4, pp. 1371-1381.

Dans la lignée d’un théorème de Wood, on donne des conditions nécessaires et suffisantes pour qu’une famille de germes d’hypersurfaces analytiques d’une variété torique projective lisse X s’interpole par une hypersurface algébrique de classe de Picard donnée.

In the spirit of a theorem of Wood, we give necessary and sufficient conditions for a family of germs of analytic hypersurfaces in a smooth projective toric variety X to be interpolated by an algebraic hypersurface with a fixed class in the Picard group of X.

DOI : 10.5802/aif.2387
Classification : 14M25, 32B10
Keywords: Toric varieties, interpolation, trace, residues, resultants
Mot clés : variétés toriques, interpolation, trace, résidus, résultants

Weimann, Martin 1

1 22 rue Jean Prévost 38000 Grenoble (France)
@article{AIF_2008__58_4_1371_0,
     author = {Weimann, Martin},
     title = {An interpolation theorem in toric varieties},
     journal = {Annales de l'Institut Fourier},
     pages = {1371--1381},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {58},
     number = {4},
     year = {2008},
     doi = {10.5802/aif.2387},
     mrnumber = {2427963},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2387/}
}
TY  - JOUR
AU  - Weimann, Martin
TI  - An interpolation theorem in toric varieties
JO  - Annales de l'Institut Fourier
PY  - 2008
SP  - 1371
EP  - 1381
VL  - 58
IS  - 4
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2387/
DO  - 10.5802/aif.2387
LA  - en
ID  - AIF_2008__58_4_1371_0
ER  - 
%0 Journal Article
%A Weimann, Martin
%T An interpolation theorem in toric varieties
%J Annales de l'Institut Fourier
%D 2008
%P 1371-1381
%V 58
%N 4
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2387/
%R 10.5802/aif.2387
%G en
%F AIF_2008__58_4_1371_0
Weimann, Martin. An interpolation theorem in toric varieties. Annales de l'Institut Fourier, Tome 58 (2008) no. 4, pp. 1371-1381. doi : 10.5802/aif.2387. https://aif.centre-mersenne.org/articles/10.5802/aif.2387/

[1] Abel, N. H. Mémoire sur une propriété générale d’une classe trés étendue de fonctions trancendantes, note présentée à L’Académie des sciences à Paris le 30 Octobre 1826, Oeuvres complètes de Niels Henrik Abel, Christiania, Volume 1 (1881), pp. 145-211

[2] Andersson, M. Residue currents and ideal of holomorphic functions, Bull. Sci. math. (2004) no. 128, pp. 481-512 | DOI | MR | Zbl

[3] Berenstein, C. A.; Yger, A. Residue calculus and effective Nullstellensatz, in American Journal of Mathematics, Volume 121 (1999) no. 4, pp. 723-796 | DOI | MR | Zbl

[4] Bernstein, D. The number of roots of a system of equations, Funct. Anal. Appl., Volume 9 (1975) no. 2, pp. 183-185 | MR | Zbl

[5] Bloch, S.; Gieseker, D. The positivity of the Chern Classes of an ample Vector Bundle, Inventiones math., Volume 12 (1971), pp. 112-117 | DOI | MR | Zbl

[6] Cattani, E.; Dickenstein, A. A global view of residues in the torus, Journal of Pure and Applied Algebra, Volume 117 & 118 (1997), pp. 119-144 | DOI | MR | Zbl

[7] Danilov, V. The geometry of toric varieties, Russian Math. Surveys, Volume 33 (1978), pp. 97-154 | DOI | MR | Zbl

[8] Ewald, G. Combinatorial convexity and algebraic geometry, Graduate Texts in Mathematics, 168, Springer-Verlag, New York, 1996 | MR | Zbl

[9] Fulton, W. Introduction to toric varieties, Princeton U. Press, Princeton, NJ, 1993 | MR | Zbl

[10] Gelfand, I. M.; Kapranov, M. M.; Zelevinsky, A. V. Discriminants, resultants, and multidimensional determinants, Mathematics: Theory & Applications, Birkhauser, Boston, 1994 | MR | Zbl

[11] Griffiths, P. A. Variations on a theorem of Abel, Inventiones math., Volume 35 (1976), pp. 321-390 | DOI | MR | Zbl

[12] Griffiths, P. A.; Harris, J. Principles of Algebraic Geometry, Pure and applied mathematics, Wiley-Intersciences, 1978 | MR | Zbl

[13] Henkin, G.; Passare, M. Abelian differentials on singular varieties and variation on a theorem of Lie-Griffiths, Inventiones math., Volume 135 (1999), pp. 297-328 | DOI | MR | Zbl

[14] Khovanskii, A. Newton polyedra and the Euler-Jacobi formula, Russian Math. Surveys, Volume 33 (1978), pp. 237-238 | DOI | MR | Zbl

[15] Pedersen, P.; Sturmfels, B. Product formulas for resultants and Chow forms, Math. Z., Volume 214 (1993) no. 3, pp. 377-396 | DOI | MR | Zbl

[16] Shchuplev, A. Toric varieties and residues, Doctoral thesis, Stockholm University, 2007

[17] Vidras, A.; Yger, A. On some generalizations of Jacobi’s residue formula, Ann. scient. Ec. Norm. Sup, 4 ème série, Volume 34 (2001), pp. 131-157 | Numdam | Zbl

[18] Weimann, M. Concavity, Abel-transform and the Abel-inverse theorem in smooth complete toric varieties (arXiv ref: math.CV/0705.0247)

[19] Weimann, M. La trace en géométrie projective et torique, Thesis, Université Bordeaux, 2006

[20] Weimann, M. Trace et Calcul résiduel : une nouvelle version du théorème d’Abel-inverse et formes abéliennes, Annales de la faculté des sciences de Toulouse Sér. 6, Volume 16 (2007) no. 2, pp. 397-424 | Numdam

[21] Wood, J. A. A simple criterion for an analytic hypersurface to be algebraic, Duke Mathematical Journal, Volume 51 (1984) no. 1, pp. 235-237 | DOI | MR | Zbl

Cité par Sources :