[Résultats de stabilité pour les inégalités de Harnack]
Nous développons de nouvelles techniques pour obtenir des inégalités de Harnack uniformes elliptiques et paraboliques sur les variétés riemanniennes à poids. Nous démontrons en particulier la stabilité de ces inégalités pour certains changements de poids. Nous donnons une condition nécessaire et suffisante pour ces inégalités dans le cas des variétés riemanniennes complètes à courbure de Ricci positive ou nulle en dehors d'un compact et dont le premier nombre de Betti est fini, ou sous la condition de courbure sectionnelle asymptotiquement positive ou nulle.
We develop new techniques for proving uniform elliptic and parabolic Harnack inequalities on weighted Riemannian manifolds. In particular, we prove the stability of the Harnack inequalities under certain non-uniform changes of the weight. We also prove necessary and sufficient conditions for the Harnack inequalities to hold on complete non-compact manifolds having non-negative Ricci curvature outside a compact set and a finite first Betti number or just having asymptotically non-negative sectional curvature.
Keywords: Harnack inequality, Riemannian manifold, heat equation
Mot clés : inégalité de Harnack, variété riemannienne, équation de la chaleur
Grigor'yan, Alexander 1 ; Saloff-Coste, Laurent 
@article{AIF_2005__55_3_825_0, author = {Grigor'yan, Alexander and Saloff-Coste, Laurent}, title = {Stability results for {Harnack} inequalities}, journal = {Annales de l'Institut Fourier}, pages = {825--890}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {55}, number = {3}, year = {2005}, doi = {10.5802/aif.2116}, zbl = {02171527}, mrnumber = {2149405}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2116/} }
TY - JOUR AU - Grigor'yan, Alexander AU - Saloff-Coste, Laurent TI - Stability results for Harnack inequalities JO - Annales de l'Institut Fourier PY - 2005 SP - 825 EP - 890 VL - 55 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2116/ DO - 10.5802/aif.2116 LA - en ID - AIF_2005__55_3_825_0 ER -
%0 Journal Article %A Grigor'yan, Alexander %A Saloff-Coste, Laurent %T Stability results for Harnack inequalities %J Annales de l'Institut Fourier %D 2005 %P 825-890 %V 55 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2116/ %R 10.5802/aif.2116 %G en %F AIF_2005__55_3_825_0
Grigor'yan, Alexander; Saloff-Coste, Laurent. Stability results for Harnack inequalities. Annales de l'Institut Fourier, Tome 55 (2005) no. 3, pp. 825-890. doi : 10.5802/aif.2116. https://aif.centre-mersenne.org/articles/10.5802/aif.2116/
[1] Bounds for the fundamental solution of a parabolic equation, Bull. Amer. Math. Soc., Volume 73 (1967), pp. 890-896 | DOI | MR | Zbl
[2] Brownian motion and harmonic analysis on Sierpinski carpets, Canad. J. Math., Volume 54 (1999), pp. 673-744 | MR | Zbl
[3] Random walks on graphical Sierpinski carpets, Random walks and discrete potential theory (Cortona, Italy, 1997) (Symposia Math.), Volume 39 (1999), pp. 26-55 | Zbl
[4] A note on the isoperimetric constant, Ann. Sci. École Norm. Sup., Volume 15 (1982), pp. 213-230 | Numdam | MR | Zbl
[5] Ends of Riemannian manifolds with nonnegative Ricci curvature outside a compact set, Bull. Amer. Math. Soc., Volume 24 (1991), pp. 371-377 | DOI | MR | Zbl
[6] Eigenvalues in Riemannian geometry, Academic Press, New York, 1984 | MR | Zbl
[7] Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Diff. Geom., Volume 17 (1982), pp. 15-53 | MR | Zbl
[8] A lower bound for the heat kernel, Comm. Pure Appl. Math., Volume 34 (1981), pp. 465-480 | DOI | MR | Zbl
[9] Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math., Volume 28 (1975), pp. 333-354 | DOI | MR | Zbl
[10] Spectral Graph Theory, CBMS Regional Conference Series in Mathematics, 92, Amer. Math. Soc. Publications, 1996 | Zbl
[11] Variétés riemanniennes isométriques à l'infini, Revista Matematica Iberoamericana, Volume 11 (1995) no. 3, pp. 687-726 | MR | Zbl
[12] Graphs between elliptic and parabolic Harnack inequalities, Potential Analysis, Volume 16 (2000) no. 2, pp. 151-168 | MR | Zbl
[13] What do we know about the Metropolis Algorithm?, J. Computer and System Sciences, Volume 57 (1998), pp. 20-36 | DOI | MR | Zbl
[14] Maximum principle for parabolic inequalities and the heat flow on open manifolds, Indiana Univ. Math. J., Volume 32 (1983) no. 5, pp. 703-716 | DOI | MR | Zbl
[15] A new proof of Moser's parabolic Harnack inequality via the old ideas of Nash, Arch. Rat. Mech. Anal., Volume 96 (1986), pp. 327-338 | MR | Zbl
[16] Function theory of manifolds which possess a pole, Lecture Notes Math., 699, Springer, 1979 | MR | Zbl
[17] The heat equation on non-compact Riemannian manifolds (Russian), Mat. Sbornik, Volume 182 (1991) no. 1, pp. 55-87 | Zbl
[18] Heat kernel upper bounds on a complete non-compact manifold, Revista Matematica Iberoamericana, Volume 10 (1994) no. 2, pp. 395-452 | MR | Zbl
[19] Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds, Bull. Amer. Math. Soc., Volume 36 (1999), pp. 135-249 | DOI | MR | Zbl
[20] Surgery of Faber-Krahn inequalities and applications to heat kernel upper bounds on manifolds with ends (2000) (in preparation)
[21] Dirichlet heat kernel in the exterior of a compact set, Comm. Pure Appl. Math., Volume 55 (2002), pp. 93-133 | DOI | MR | Zbl
[22] Hitting probabilities for Brownian motion on Riemannian manifolds, J. Math. Pures et Appl., Volume 81 (2002), pp. 115-142 | DOI | MR | Zbl
[23] Structures métriques pour les variétés Riemannienes, Cedic/Ferdnand Nathan, Paris, 1981 | MR | Zbl
[24] Sobolev Met Poincaré, 688, Memoirs of the AMS, 2000 | MR | Zbl
[25] On the relation between elliptic and parabolic Harnack inequalities, Ann. Inst. Fourier, Volume 51 (2001) no. 5, pp. 1437-1481 | DOI | Numdam | MR | Zbl
[26] The Poincaré inequality for vector fields satisfying Hörmander condition, Duke Math. J., Volume 53 (1986), pp. 503-523 | MR | Zbl
[27] Analytic inequalities, and rough isometries between non-compact Riemannian manifolds (Lecture Notes Math.), Volume 1201 (1986), pp. 122-137 | Zbl
[28] Harmonic functions with growth conditions on a manifold of asymptotically nonnegative curvature I., Geometry and Analysis on Manifolds (Katata/Kyoto, 1987) (Lecture Notes Math.) (1988), pp. 158-181 | Zbl
[29] Prescribing curvatures, Proceedings of Symposia in Pure Mathematics, Volume 27 (1975) no. 2, pp. 309-319 | MR | Zbl
[30] Application of Malliavin calculus, III, J. Fac. Sci. Tokyo Univ., Sect. 1A, Math., Volume 34 (1987), pp. 391-442 | MR | Zbl
[31] The second order equations of elliptic and parabolic type (Russian), Nauka, Moscow, 1971 | Zbl
[32] Positive harmonic functions on complete manifolds with non-negative curvature outside a compact set, Ann. Math., Volume 125 (1987), pp. 171-207 | DOI | MR | Zbl
[33] Green's function, harmonic functions and volume comparison, J. Diff. Geom., Volume 41 (1995), pp. 277-318 | Zbl
[34] On the parabolic kernel of the Schrödinger operator, Acta Math., Volume 156 (1986) no. 3,4, pp. 153-201 | MR | Zbl
[35] Ball covering property and nonnegative Ricci curvature outside a compact set, Differential Geometry: Riemannian Geometry (Los Angeles, CA, 1990) (Proceedings of Symposia in Pure Mathematics), Volume 54, Part 3 (1993), pp. 459464 | Zbl
[36] Some Liouville theorems on Riemannian manifolds of a special type (Russian), Izv. Vyssh. Uchebn. Zaved. Matematika, Volume 12 (1991), pp. 15-24 | MR | Zbl
[37] Weighted Poincaré and Sobolev inequalities for vector fields satisfying Hörmander's condition and applications, Revista Matematica Iberoamericana, Volume 8 (1992) no. 3, pp. 367-439 | MR | Zbl
[38] Brownian motion and harmonic functions on rotationally symmetric manifolds, Ann. Prob., Volume 14 (1986) no. 3, pp. 793-801 | DOI | MR | Zbl
[39] On Harnack's theorem for elliptic differential equations, Comm. Pure Appl. Math., Volume 14 (1961), pp. 577-591 | DOI | MR | Zbl
[40] A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math., Volume 17 (1964), pp. 101-134 | DOI | MR | Zbl
[41] Positive harmonic functions on rotationary symmetric Riemannian manifolds, Potential Theory (1992), pp. 251-259 | Zbl
[42] Two-side estimates of fundamental solutions of second-order parabolic equations and some applications (Russian), Uspekhi Matem. Nauk, Volume 39 (1984) no. 3, pp. 101-156 | MR | Zbl
[43] A note on Poincaré, Sobolev, and Harnack inequalities, Internat. Math. Res. Notices, Volume 2 (1992), pp. 27-38 | MR | Zbl
[44] Parabolic Harnack inequality for divergence form second order differential operators, Potential Analysis, Volume 4 (1995), pp. 429-467 | DOI | MR | Zbl
[45] Lectures on finite Markov chains,, Lecture Notes Math., Springer, 1997 | MR | Zbl
[46] Aspects of Sobolev inequalities (London Math. Soc. Lecture Notes Series), Volume 289 (2002) | Zbl
[47] Sharp estimates for capacities and applications to symmetrical diffusions, Probability theory and related fields, Volume 103 (1995) no. 1, pp. 73-89 | DOI | MR | Zbl
[48] Spaces of harmonic functions, J. London Math. Soc., Volume 2 (2000) no. 3, pp. 789-806 | MR | Zbl
[49] Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math., Volume 28 (1975), pp. 201-228 | DOI | MR | Zbl
Cité par Sources :