We prove that the rational homotopy type of the configuration space of two points in a -connected closed manifold depends only on the rational homotopy type of that manifold and we give a model in the sense of Sullivan of that configuration space. We also study the formality of configuration spaces.
Nous démontrons que le type d’homotopie rationnelle de l’espace des configurations de deux points dans une variété fermée -connexe dépend uniquement du type d’homotopie rationnelle de cette variété et nous montrons comment construire un modèle de Sullivan de cet espace de configuration. Nous étudions aussi la formalité des espaces de configuration.
Keywords: configuration space, Sullivan model
Mot clés : espaces de configuration, modèles de Sullivan
Lambrechts, Pascal 1; Stanley, Don 
@article{AIF_2004__54_4_1029_0, author = {Lambrechts, Pascal and Stanley, Don}, title = {The rational homotopy type of configuration spaces of two points}, journal = {Annales de l'Institut Fourier}, pages = {1029--1052}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {54}, number = {4}, year = {2004}, doi = {10.5802/aif.2042}, zbl = {1069.55006}, mrnumber = {2111020}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2042/} }
TY - JOUR AU - Lambrechts, Pascal AU - Stanley, Don TI - The rational homotopy type of configuration spaces of two points JO - Annales de l'Institut Fourier PY - 2004 SP - 1029 EP - 1052 VL - 54 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2042/ DO - 10.5802/aif.2042 LA - en ID - AIF_2004__54_4_1029_0 ER -
%0 Journal Article %A Lambrechts, Pascal %A Stanley, Don %T The rational homotopy type of configuration spaces of two points %J Annales de l'Institut Fourier %D 2004 %P 1029-1052 %V 54 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2042/ %R 10.5802/aif.2042 %G en %F AIF_2004__54_4_1029_0
Lambrechts, Pascal; Stanley, Don. The rational homotopy type of configuration spaces of two points. Annales de l'Institut Fourier, Volume 54 (2004) no. 4, pp. 1029-1052. doi : 10.5802/aif.2042. https://aif.centre-mersenne.org/articles/10.5802/aif.2042/
[1] Computations of Gelfand-Fuks cohomology, the cohomology of function spaces, and the cohomology of configuration spaces, Geometric applications of homotopy theory I (Proc. Conf., Evanston 1977) (Lecture Notes in Math.), Volume 657 (1978), pp. 106-143 | Zbl
[2] Real homotopy theory of Kähler manifolds, Invent. Math, Volume 29 (1975), pp. 245-274 | MR | Zbl
[3] Rational homotopy theory, Graduate Text in Mathematics, vol. 210, Springer-Verlag, 2001 | MR | Zbl
[4] A compactification of configuration spaces, Annals of Math, Volume 139 (1994), pp. 183-225 | MR | Zbl
[5] Poincaré duality embeddings and fiberwise homotopy theory, Topology, Volume 38 (1999), pp. 597-620 | MR | Zbl
[6] Poincaré duality embeddings and fiberwise homotopy theory, II, Quart. Jour. Math. Oxford, Volume 53 (2002), pp. 319-335 | MR | Zbl
[7] On the rational homotopy type of configuration spaces, Annals of Math, Volume 139 (1994), pp. 227-237 | MR | Zbl
[8] Cochain model for thickenings and its application to rational LS-category, Manuscripta Math, Volume 103 (2000), pp. 143-160 | MR | Zbl
[9] Algebraic models of the complement of a subpolyhedron in a closed manifold (submitted) (, http://gauss.math.ucl.ac.be/topalg/preprints/preprint-top)
[10] module models for the configuration space of points (in preparation)
[11] Spaces of arcs and configuration spaces of manifolds, Topology, Volume 34 (1995), pp. 217-230 | MR | Zbl
[12] Symmetric bilinear forms, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 73, Springer-Verlag, 1973 | MR | Zbl
[13] Configuration spaces of algebraic varieties, Topology, Volume 35 (1996) no. 4, pp. 1057-1067 | MR | Zbl
[14] Rational Poincaré duality spaces, Illinois J. Math, Volume 27 (1983), pp. 104-109 | MR | Zbl
[15] Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. (1977) no. 47, pp. 269-331 | Numdam | MR | Zbl
Cited by Sources: