
AN

N
A
L
E
S
D
E

L’INSTI
T

U
T
F
O
U
R

IE
R

ANNALES
DE

L’INSTITUT FOURIER

Pascal LAMBRECHTS & Don STANLEY

The rational homotopy type of configuration spaces of two points
Tome 54, no 4 (2004), p. 1029-1052.

<http://aif.cedram.org/item?id=AIF_2004__54_4_1029_0>

© Association des Annales de l’institut Fourier, 2004, tous droits
réservés.

L’accès aux articles de la revue « Annales de l’institut Fourier »
(http://aif.cedram.org/), implique l’accord avec les conditions
générales d’utilisation (http://aif.cedram.org/legal/). Toute re-
production en tout ou partie cet article sous quelque forme que ce
soit pour tout usage autre que l’utilisation à fin strictement per-
sonnelle du copiste est constitutive d’une infraction pénale. Toute
copie ou impression de ce fichier doit contenir la présente mention
de copyright.

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://aif.cedram.org/item?id=AIF_2004__54_4_1029_0
http://aif.cedram.org/
http://aif.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/


1029

THE RATIONAL HOMOTOPY TYPE

OF CONFIGURATION SPACES OF TWO POINTS

by Pascal LAMBRECHTS1 &#x26; Don STANLEY

1. Introduction.

The configuration space of k points in an m-dimensional manifold M
is the space

As a special case we have

where A: M - M x M is the diagonal map.

In the present paper we study the rational homotopy type of F(M, 2)
when the manifold M is closed (that is compact and without boundary); we
will always suppose that our manifold is piecewise linear. We will prove in

particular that when M is 2-connected then the rational homotopy type of

F(M, 2) is completely determined by the rational homotopy type of M. In
fact we will exhibit a description of the rational homotopy type of F(M, 2)
in terms of a CDGA-model in the sense of Sullivan’s theory ( ~15~ and see
also below for a summary of this theory).

Before describing such a model it is enlightening to consider the

following description of the cohomology algebra H* (F(M, 2)) implicit in

Keywords: Configuration space - Sullivan model.
Math. classification: 55P62.
1 P. Lambrechts est chercheur qualifi6 au FNRS.
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the work of Cohen and Taylor [1]. When M is closed and oriented, H* (M) is
a Poincar6 duality algebra and there is a preferred generator [M] E Hm(M).
Choose a homogeneous basis of H*(M). Then there exists a
Poincar6 dual basis characterized by the equations

Define the diagonal class

and consider the ideal (A) generated by A in H* (M) Q9 77* (M). We have
then the following

THEOREM 1.1 (Cohen-Taylor). - If M is a closed oriented manifold
then there is an isomorphism of algebras

We come now to a description of the results of this paper. Recall
that Sullivan [15] has associated to each connected space X a commutative
differential graded algebra (a CDGA for short), ApL(X). By definition
a CDGA-model of X is any CDGA (A, d) that is weakly equivalent to

in the sense that there exists a chain of quasi-isomorphisms of
CDGA’s connecting (A, d) and ApL(X). The main result of Sullivan’s
theory is that if X is simply-connected (or nilpotent) then any CDGA-
model of X determines the rational homotopy type of X (see [3] for an

extensive presentation of this theory.) We will prove the following

THEOREM 1.2 (Theorem 5.6). - Let 1B;[ be an oriented connected

closed manifold of dimension rrz such that = ~) = 0.
Suppose that (A, d) is a CDGA-model of M such that A is a connected

Poincar6 duality algebra of formal dirnension m. Then there is a well defined,

(up to a multiplicative unit) diagonal class

the ideal (A) = A. (A (D A) is a differential ideal, and the quotient CDGA
A + A
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A first class of examples of manifolds admitting such a Poinear6
duality model (A, d) is given by formal manifolds: a space X is called formal
if (H* (X ; ~), 0) is a CDGA model of X. In that case our theorem implies
that the configuration space F(M, 2) is formal and a CDGA model for it
is given by the CDGA ((R~(M)(g)~(M))/(A),0). Important examples
of formal spaces are given by smooth projective compact complex varieties
[2]. For such a projective manifold M, Fulton-Mac Pherson [4] and Kriz [7]
have given an explicit CDGA model for the configuration space F(M, k),
for any k (see also [13]). Their model is determined by the cohomology
algebra H* (M; Q) and the diagonal class 0. In the special case k = 2 their
model is indeed equivalent to ours as we will see at the end of Section 5.

There are also many non formal spaces admitting a Poincar6 duality
CDGA model (see the last section of this paper and in particular Exam-
ple 6.2). In fact it is conjectured (in folklore of Rational Homotopy Theory)
that every closed manifold admits such a model.

Even if M does not admit a CDGA Poincar6 duality model, we can
still build a CDGA model of F(M, 2):

THEOREM 1.3. - Let M be a connected orientable closed manifold

and suppose that H’(M; Q) - H 2 (M; Q) - 0. Then a CDGA-model of

F(M, 2) can be explicitly determined out of any CDGA-model of M.

This model will be described in the proof of Theorem 1.3. According
to the theory of Sullivan the last theorem implies the following

COROLLARY 1.4. - Let M be a simply-connected closed manifold
such that H2(M; Q) == 0. Then the rational homotopy type of F(M, 2)
depends only on the rational homotopy type of M.

Note that Levitt [11] has proved that if M is a 2-connected closed

manifold then the homotopy type of F(M, 2) depends only on the homotopy
type of M, and John Klein has an analogous result for 3-connected

Poincar6 duality spaces ([5] and [6]). But these results do not imply
directly Corollary 1.4. Added in proof: very recently R. Longoni and
P. Salvatore have given an example of two homotopy equivalent manifolds
Ml and M2 such that F(Ml, 2) and F(M2, 2) are not rationnaly homotopy
equivalent. This shows that some connectivity hypothesis is necessary in
our Theorem 1.3 and Corollary 1.4.

As a last application we will study the formality of configuration
spaces. We will prove that when M is 2-connected and closed then F(M, 2)
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is formal if and only if M is formal. More generally for any k ) 1 and for
M a simply connected closed manifold, if M is not formal then the same
is true for F(M, k).

2. Notation.

In all the paper we work over the field Q of rational numbers. We
will consider commutative non negatively graded differential algebras, or
CDGA for short. The degrees are written as superscripts and the differential
increases the degree. If R is a CDGA we will consider also left differential
graded modules over R (R-dgmodules for short). A CDGA R is called
connected if and of finite type if dim Ri  oo for all i. If R is a

CDGA we make RÇ9R a CDGA in the standard way. See [3] for the precise
definitions of all these objects.

The k-th suspension of an R-dgmodule M is the R-dgmodule s km
defined by

The d ual of a graded vector space V is the graded vector space #V
defined by

If (M, d) is a left R-dgmodule then #M inherits an obvious right R-module
structure. Using the graded commutativity of R we can turn it into a left
R-module structure by the rule

Moreover there is a differential d~ on #M defined by, for 0 C #M and
~ ,,- 

It is straightforward to check that this makes (#M, d#) an R-dgmodule.
If f : (M, dM ) -~ (N, dN) is a morphism of R-dgmodule, the mapping

cone of f is the R-dgmodule

defined by
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3. CDGA-model of the complement of the diagonal.

In this section we prove Theorem 1.3 and Corollary 1.4.

Let W be a closed oriented manifold of dimension n and let

f : P - W be an embedding of a polyhedron. We review Theorem 6.2
of [9] which describes a CDGA model of the complement W B P under
some connectivity-dimension restrictions. Suppose that the following data
are given:

(ii) an R-dgmodule D weakly equivalent 

(iii) an R-dgmodule morphism ~’ : D -~ R such that is an isomor-

phism (such a map is called a shriek map in [9] Definition 3.1 ) .

Suppose that there exist integers m &#x3E; r ~ 1 such the following
dimension-connectivity hypotheses are satisfied:

is connected;

Condition (vii) is essential and is called the unknotting condition. It
imposes a lower bound on the codimension of the embedding in terms of
the connectivities and the dimension of the ambient manifold. It is because

of this hypothesis that we require some 2-connectivity restrictions in the
present paper.

Let 10 be a complement of the cocycles in Rn-r-2, let Ko be a

complement of the cocycles in Dn-r-l, set I = and

K = Ko ~ Consider the following quotient of mapping cone

C(§’) := (R Go, sK). For degree reasons there exists a unique
graded commutative multiplication on C(~~ ) that extends the R-module
structure. Moreover the differential on C(~~ ) satisfies the Leibnitz rule.

Thus this defines a CDGA structure on (R eo! sK) which is

called the semi-trivial CDGA structure ([9] Definition 2.20).
We have then the following

THEOREM 3.1 ([9], Theorem 6.2). - With all the hypotheses above,
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is a CDGA-model of the complement W B P.

To determine the CDGA model of F(M, 2) we apply Theorem 3.1
with W = M x M and P = A(M) .

Proof of Theorem 1.3 and Corollary 1.4. - Let M be a con-

nected closed orientable manifold of dimension m such that HI (M; Q) -
H2 (M; Q) = 0 . Suppose that Q is a CDGA-model M. If Q is not connected
we replace it by a minimal Sullivan model which is connected.

The multiplication map

is a CDGA-model of the diagonal ApL (M x M) -~ ApL (M). Set
m = dim M, n = 2m, and R = Q 0 Q which is connected. The CDGA-
morphism 0 induces a structure of R-dgmodule on Q and therefore also on

.

Take a minimal semi-free R-dgmodule model D of in the

sense of [3] § 6. Since 0 we have by minimality
that = 0. Note that Hn(D) "--’ #H°(Q) %# Q. Hence by [9],
Proposition 3.2, there exists a shriek map of R-dgmodule ~~ : D -~ R
characterized by the fact that Hn (R) is an isomorphism.

Set r = 1 and let I EB sK be a suitable differential ideal in sD as

constructed earlier in this section. Then the hypotheses of [9], Theorem
6.2, hold and (R EB1&#x3E;’ sK) is a CDGA-model of F(M,2) =
M x M B A (M). This proves Theorem 1.3.

We can suppose that m = 0. Since M is simply connected
and H 2 (M; Q) = 0 we have m &#x3E;, 3. Thus A(M) is of codimension greater
than 3 in M x M and by a general position argument or by the Van Kampen
theorem M x M B is also simply-connected. Therefore the rational
homotopy types of M and F(M, 2) are determined by any of their CDGA-
models. Thus Corollary 1.4 follows. D

4. Differential Poincaré duality algebras
and the diagonal class.

In this section we study CDGA’s that satisfies Poincar6 duality and
we define the diagonal class of a Poincaré duality algebra in order to prepare
the proof of Theorem 1.2 in the next section.
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DEFINITION 4.1. - A Poincar6 duality algebra (over Q) of formal
dimension m is a non-negatively graded commutative algebra A of finite
type for which there exists a linear form w: A ~ Q of degree -m such that
the bilinear form

is non degenerate, that is it induces an isomorphism

The linear form w E is called a fundamental class or an

orientation class and the couple (A, w) is called an oriented Poincaré duality
algebra.

If a homogeneous basis of A then the unique basis

of A characterized by the equations

where b2~ is the Kronecker symbol, is called tlle Poincaré dual basis of

For example if M is an oriented closed manifold of dimension m then

H* (M; Q) is a Poincaré duality algebra of formal dimension m.

If A is a Poincaré duality algebra of formal dimension m then
and Ai = 0 for i &#x3E; m. Since A is of finite type, this implies

that A is finite-dimensional as a vector space and therefore it always admits
a homogeneous finite basis Notice also that the Poincaré dual

basis is also homogeneous with = m - deg(ai).

Note that the bilinear form ( ., . ) depends on the choice of a fundamen-
tal class If A is connected then this choice is unique up to a multiplicative
unit in Q B {O}. This bilinear form is graded symmetric in the sense that

LEMMA 4.2. - Suppose that (~4,~) is an oriented Poincaré duality
algebra. Let be a homogeneous basis of A and let 
be its Poincaré dual basis. If E Q are defined by the equations

Proof. For each j, k, 1 c f 1, - - ., N~ we have, using the equations



1036

(,--1- I G-1 I

Since these equations are true for any l = l, ... , N, the non degeneracy of
the bilinear form (.,.) implies that

PROPOSITION 4.3. - Let (A, w) be an oriented Poincar6 duality
algebra of formal dimension m. Let be a homogeneous basis of
A and let be its Poincar6 dual basis. Then the element

does not depend on the choice of the basis 

Proof. Let be another homogeneous basis of A and let
be its Poincaré dual basis. There exists an invertible matrix

elementary computation shows that

Since the bases are homogeneous we have
Therefore
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DEFINITION 4.4. - Let (A, cv) be an oriented Poincaré duality
algebra of formal dimension m. The element

defined by Equation (4.2) in Proposition 4.3 is called the diagonal class of
(A, w).

Notice that the diagonal class does depend on the orientation c~. In
fact it is easy to compute that if r 6 Q ) (0) then the diagonal class of
(A, is (1/r) times the diagonal class of (A, 

There is an obvious A ~ A-module structure on s-mA defined by
(x (9 y). (s-ma) == for ho-

mogeneous elements a, 

LEMMA 4.5. - Let (A, w) be an oriented Poincar6 duality algebra
of finite dimension and of formal dimension m, and let ~ E (A 0 A)m be
its diagonal class. Then the map

is a morphism of A 0 A-modules.

Proof. Let be homogeneous elements. Set

E - (_1)(m. deg(x)+m. deg(y)+deg(a). deg(y)).
Then

On the other hand

B " " V’ "

From Equations (4.3) and (4.4), we see that it is enough to prove that

0. ( 1 ~ x) = 0. (~ ~ 1 ) , and by linearity it is sufficient to prove this equation
for x an element of a homogeneous basis of A.

be such that A straightforward
computation yields
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and a similar computation using Lemma 4.2 gives

Notice that if deg(ai) then ’3 = 0. Therefore we can
suppose in each of the terms of the sums (4.5) and (4.6) that deg(ak) =
deg (ai ) -~ deg(a~ ) . Using the fact that deg(ag ) = we deduce that

these two sums agree. This proves that

DEFINITION 4.6. - An oriented differential Poincaré duality alge-
bra is a triple (A, d, w) such that

(i) (A, d) is a CDGA,

(ii) (A, is an oriented Poincaré duality algebra, and

(iii) 0.

We say also that (A, d) is a differential Poincaré duality algebra.

The motivation for condition (iii) in the last definition is the following

PROPOSITION 4.7. - Let (A, d, w) be an oriented differential Poin-
car6 duality algebra of formal dimension m. Then

(i) the map 8: A ~ defined in (4.1) is an isomorphism of

A-dgmodules, and

(ii) H* (A, d) is a Poincaré duality algebra of formal dimension m with
an orientation class

Proof. (i) It is straightforward to check that 0 is a morphism of
A-modules. We will show that it commutes with the differentials. Denote

by d# the differential on the dual ~A and by d* the differential on its
suspension Let a be an homogeneous element in A. We need
to prove that 8(da) = d*(0(a)). By definition of 0 we have 8(da) _
~~(da,2013) and by the definition of the differential on the suspension

1 . Therefore we have to prove that

Let x be an homogeneous element in A, we have



1039

On the other hand by the definition of the differentials on the dual we have

Since = 0 we have

If ) x ) + lal + 1 ~ m then the expressions (4.8) and (4. 7) are both 0 for degree
reasons. If x ~ + lal -~ 1 = m then a straightforward computation using (4.9)
implies that the expressions (4.8) and (4.7) are equal.

This proves that 0 commutes with the differentials and is an A-

dgmodule morphism.

(ii) Since w(dA) == 0, the linear form is well defined. The

differential isomorphism () induces an isomorphism

It is immediate to check that H* (8) is the morphism defined by the bilinear
form associated to following (4.1) in Definition 4.1. Since H* (0) is an

isomorphism, this bilinear form is non degenerate and (H* (A, d), [w]) is an
oriented Poincar6 algebra. 0

Note that because of the hypothesis (iii) in Definition 4.6, a CDGA
whose underlying algebra is Poincar6 duality is not necessarily a differential
Poincar6 duality algebra. However we have the following easy criterion:

PROPOSITION 4.8. - Suppose that (A, d) is a CDGA and that

(A, cv) is a Poincaré duality algebra of formal dimension m. If A is connected
then (A, d, is a differential Poincaré duality algebra if and only if

Hm (A, d) :~ o.

Proof. - Suppose that 0. By the connectivity and
Poincar6 duality we have A’ ~--- Q. Since H’ (A, d) =,4 0 we get that
A"2 n im d = 0. Therefore w(dA) - 0 and (A, d, is a differential Poincar6

duality algebra. This proves one direction.

The other direction is an immediate consequence of Proposition 4.7

(ii). Indeed since H* (A, d) is a Poincar6 duality algebra of formal dimension
m, we have Hm (A, d) ~ 0. D

We want now to prove that the diagonal class A of a differential
Poincar6 duality algebra (A, d) is a cocycle in A (9 A. For this we will
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first prove that there exists a suitable decomposition of the vector space
A compatible with both the differential and the Poincar6 duality pairing
(Lemma 4.10).

Let (A, d, u) be an oriented differential Poincar6 duality algebra. We
define a representative subspace of the cohomology as a vector subspace
H C ker(d) such that the composite

is an isomorphism. Using the bilinear form associated to the orientation w
we define the orthogonal of a subspace V C A as

LEMMA 4.9. - Let be an oriented differential Poincaré

duality algebra and let H C ker d be a representative subspace of the
cohomology. Then

(i) The restriction of the bilinear form (.,.) to H 0 H is non degen-
erate.

(ii) = 0 and A = 

(iii) The restriction of the bilinear form (.,.) to H.l 0 77~ is non

degenerate.

Proof. (i) is a consequence of Proposition 4.7 (ii) and of the
following commutative diagram

(ii) As a consequence of (i), for any non-zero element x in H there exists
~ E H such that (x, y) # 0. Therefore H n = {0}. The fact that
A = 77 (B H-L as well as (iii) can be proved exactly like Lemma 1.3.1 in
[12]. a

We introduce the following notation. Let A be a differential Poincar6
algebra and let H C ker d be a representative subspace of the cohomology.
Let V C be a subspace. The orthogonal of V in will be denoted

by
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LEMMA 4.10. - Let (A, d, w) be an oriented differential Poincaré
duality algebra and let H C ker d be a representative subspace of the
cohomology. Then

(i) ker d C (im d)-~;
(ii) ;

(iii) (im d) ~ = im d;

(iv) there exists a subspace T C H-L such that

- H-L 

- T’j - T

- d: T ~ im d is an isomorphism.

In particular we have a decomposition A = H EB im dEBT.

because 0.

The two short exact sequences
- . , "I ,

and the fact that A = 77 (B H1 imply that

Since the pairing (.,.) is non degenerate on and im d C we

have also

This combined with Equation (4.10) implies that dim im d = dim(im d)’.
From the inclusion im d C (im d)’ we deduce that im d = (im d) ~ .

(iv) This is essentially the argument of [12] Lemma 1.6.3, that we
adapt to the case of a graded symmetric bilinear form. br ~ be
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a homogeneous basis of im d. Since H-L - 2 dim(im d) we complete this
basis of im d into a homogeneous basis of 

be the dual basis in with respect to the non

degenerate pairing. Then f u* , ... ~ is clearly a basis of (im d) ~ . Since
(im d) ~ = im d, this implies that f u* 1 .... is a basis of H~- . -
Moreover (u*, u*) - 0 because (im d, im d) = 0.

Let m be the formal dimension of A. Set

and

Then ..., ur, tl , ..., tr ) is another basis of and a computation gives

In other words the matrix of the bilinear form (.,.) on in the latter

basis is
/ 11 T± B

where I is an identity matrix of rank r and a diagonal matrix of rank
r with only ±l on the diagonal.

Set T = C H~-. Then = T (Dim d and the form of the
matrix above implies that 7~ = T.

Since H (D im d = ker d, the morphism d: T ~ im d is injective. For
dimension reasons it is therefore an isomorphism.

The last statement of the lemma is a consequence of Lemma 4.9

(ii). 0

PROPOSITION 4.11. - Let (A, d, w) be an oriented differential

Poincare algebra of forrnal dimension m. Then the diagonal class

A E (A (9 A) m is a cocycle.

Proof. Let H C ker d be a representative subspace of the co-

homology. By Lemma 4.10, there exists a subspace T C H~- such that
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= im d~T , T = T~ and d: T --~ im d is an isomorphism. 
be a basis of H and let ~tl , ... , tr ~ be a basis of T. Then

is a basis of A. Consider the Poincar6 dual basis

Since T E9 im d H-L we have that z; c H.

Next we prove that t* = Since

we have that

Since (im d, im d) = 0 = (H, im d) we have also

As a consequence we get that

Therefore the diagonal class is

A direct computation using the fact that

5. Small CDGA-model of F(M, 2).

In this section we establish a small CDGA-model for F(M, 2) when
M admits a connected Poincar6 duality model (see Theorem 1.2 of the
introduction).

In all the section we consider a connected differential Poincar6 duality
algebra (A, d) of formal dimension m. Let u be an orientation of A and
consider the associated diagonal class A E (A Q9 A)m. Remember from
Lemma 4.5 the map
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We establishes a series of lemmas to prepare the proof of Theorem 1.2.

LEMMA 5.1. - 0 is a morphism of A 0 A-dgmodules and its

mapping cone 
-

is an A 0 A-dgmodule.

Proof. By Lemma 4.5 we know that A is a morphism of A (9 A-
modules. The fact that 0 commutes with the differential is an immediate
consequence of d(0) = 0 (Proposition 4.11). Thus 0 is a morphism of
A ~ A-dgmodules, hence C(0) is an A ~ A-dgmodule. 0

We equip the mapping cone C(A) with a multiplication defined by,
for a, b, a’, b’, x, YEA,

LEMMA 5.2. - The mapping cone C(0)
equipped with the multiplication (5.1) is a CDGA.

Proof. It is straightforward to check that this multiplication en-
dows C(0) with a structure of graded commutative algebra. Moreover this
multiplication extends the one defined by the A (9 A-module structure.

We need only to verify the Leibnitz rule for the differential d on C"(A).
Since this mapping cone is an A © A-dgmodule, it is enough to check that,
for x, YEA, we have

The left hand side of this equation is zero. We develop the right hand side:
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Using the graded commutativity of the multiplication and the A0A-module
structure on the last expression becomes

This proves the Leibnitz rule. 11

LEMMA 5.3. - The ideal (A) := generated by A in A~ A
is a differential ideal and the quotient (A (9 A)/(A) is a CDGA.

Proof. By Proposition 4.11, d(0) = 0, hence the ideal (A) is

differential. This implies immediately that the quotient (A&#x26;A)/ (A) inherits
a CDGA structure. 0

LEMMA 5.4. - The map 0 induces an isomorphism

Proof. It is clear from the definition of A that (A).
Hence we need only to prove that 0 is injective.

Let cv be the orientation class of the Poincar6 duality algebra A.
Since A is connected, ~4~ ~ Q and there exists a unique element p E Am
such that = 1. The definition of the diagonal class implies that

A.(l (g)~) = p (9 A.
Let a be a non-zero element of A2. By Poincar6 duality there exists

an element b E Am-’ such that a.b = ~. We have

Therefore 0, which proves that A is injective.

We extend the canonical projection

into a map

by setting 0.

LEMMA 5.5. - The map 1T: ) defined
above is a CDGA quasi-isomorphism.
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Proof. It is straightforward to check that 7r is a CDGA morphism.
Since Lie is injective, we have a short exact sequence

The five lemma applied to the long exact sequences in homology implies
that the map

is a quasi-isomorphism ([9], Lemma 2.14). By Lemma 5.4 the map 7r can
be identified with pr (D 0. 0

We are now ready for the proof of the main result of this section:

THEOREM 5.6. - Let M be a connected closed manifold orientable

of dimension m such that ~) = H 2 (M; Q) = 0. Let (A, d) be a
CDGA-model of M such that A is a connected Poincare duality algebra
of formal dimension m and let A E (A 0 A)rn be the diagonal class. Then
the ideal (0) = A -(A 0 A) is a differential ideal in A (D A and the quotient
CDGA 

A - AA r-.. A

is a CDGA model of 2).

Proof We have proved in Lemma 5.3 tllat (A) is a differential

ideal.

Since A is a connected Poincaré duality algebra of formal dimension
m and since H"2 (A, d) = 0, Proposition 4.8 implies that

(A, d, u) is a differential Poincar6 duality algebra in the sense of Defini-
tion 4.6 for some orientation u C 

Consider the multiplication ~: A ~ A - A, a (29 b - a,.b which is

a CDGA-model of the diagonal APL (A): ApL(M x M) - ApL(M). Set
n = 2m. The morphism 0 induces an obvious A ~ A-dgmodule structure
on A, hence on s-’~ ~A. By Proposition 4.7 (i) s-n ~A = 
is isomorphic to s-mA as an A-dgmodule, therefore also as an A (29 A-
dgmodule.

By Lemma 5.1 the map 0: s-mA - A ~ A is of A ~ A-dgmodules.
Moreover it induces an isomorphism in Hn /~0/~ where

J1 E is the element such that w (~C) = 1. Thus A is a shriek map in the
sense of Definition 3.1 in [9].
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Let Io be a complement of the cocycles in

Let Ko be a complement of the cocycles in 
-2. Then Theorem 6.2 of [9] (see also the proof

of Theorem 1.3 in the present paper) implies that the CDGA

is a CDGA model of F(M, 2).

Comparing the semi-trivial CDGA structure ([9], Definition 2.20) on
(A 0 A EBA sK) with the multiplication (5.1), it is clear that
the projection

is a CDGA map. Moreover it is a quasi-isomorphism by [9] Lemma 6.7.

Thus A 0 A ss-mA is a CDGA model of F(M, 2). By Lemma 5.5
the same is true for (A o ~)/(A). 0

Remark 5.7. - The proof above shows that the CDGA 
ss-’nA is also a model of F(M, 2). When M is formal then we can take
(A, d) _ (H*(M; Q), 0). In that case the CDGA model Q) 0
H* (M; (M; Q) is exactly the Kriz model for F(M, 2) when
M is a smooth compact projective variety [7]. In a forthcoming paper [10],
we will build for 1~ &#x3E; 2 a CDGA analog of the Kriz model for F(M,k) but
with a differential Poincar6 duality algebra (A, d) replacing the cohomology
algebra. Moreover this CDGA will be shown to be weakly equivalent as a

dgmodule to 

6. Formality.

In this last section we develop a few examples of manifolds admitting
a differential Poincar6 duality CDGA model and we discuss the formality
of configuration spaces.

Recall that a space X is called formal if (H* (X; Q), 0) is a CDGA-

model of X. If M is a formal closed orientable manifold then (H* (M; Q), 0)
is a Poincaré duality CDGA-model of X. Therefore an immediate applica-
tion of Theorem 1.2 gives the following
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COROLLARY 6.1. - If M is a closed connected formal manifold of

dimension m such that H1 (H; ~) = H 2 (M; (Q) = 0 then F(llil, 2) is a

formal space and admits as a CDGA-model its cohomology algebra

where A is the diagonal class.

There are also many non formal manifolds that admit Poincar6

duality CDGA-models. For example let X be a finite simply connected CW-
complex of cohomological dimension q. By truncating a connected CDGA
model of X by a suitable ideal we can construct a CDGA model (B, dB ) for
X that is connected and such that = 0. Let m &#x3E; 2q + 1 and consider
a thickening T of X of dimension m + 1, that is T is a compact (m + 1)-
manifold (with boundary) of the homotopy type of X. By [8] Theorem
6, the CDGA (A, d) := (B (1) is a model of the

boundary M := 0T, and A is a connected Poincar6 duality algebra of
formal dimension m. Thus M admits a Poincar6 duality CDGA model but
it is not formal when X is not formal.

Another family of examples of manifolds admitting a Poincare duality
CDGA model are given by products !vI == N x S’’n-r where N is a closed
manifold of dimension r  m/2 (see [8] middle of p. 158 for the details).

A third family of examples is given by odd-sphere bundles over a
manifold admitting a Poincar6 duality CDGA model like in the following
example.

Example 6.2. - Let M be an S5 -bundle over ,S’3 x ,S’3 with non-zero
Euler class. Such a bundle exists because twice the universal Euler class

e 6 Z) is in the image of Hurewicz and our bundle is classified

by the obvious map ,S’3 x ,S’3 -~ ,S’6 ~ BSO(6). Standard arguments in
rational homotopy theory show that a Sullivan model of that manifold M
is given by

with deg(x) = deg(y) = 3 and deg(z) = 5. This is a Poincar6 duality
CDGA model of M.

We describe the model of F(M, 2) for this example. The diagonal
class is

A minimal Sullivan model of (A 0 A) / ( 0 ) , hence of F(M, 2), is of the form

~(~3?~3~5~3~3?~ other generators of degrees &#x3E; 10).
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From this we prove that F(M, 2) is not formal. Consider the cohomology
classes [x], [y] E 2); Q). Then

is a non trivial Massey product because it contains the cohomology class
[z] which does not belong to ~x~ .H* (F(M, 2) ; Q). According to [2] Section 4
this implies that F(M, 2) is not formal.

The end of the section is devoted to the proof of the fact that if M is
a simply connected non-formal manifold then F(M, k) is not formal either
(Proposition 6.6). To prove this result we need the following three lemmas.

LEMMA 6.3. - Let M be a simply-connected closed manifold of
0

dimension m and denote by M the manifold with one point removed, that
0 0

is M:= M *1. If M is formal then so is M.

.* 0

Proof. The map of algebras H* (M; Q) H*(M; Q) can be
0

realized by a map between formal spaces that we denote by i’ : M’-~ M’.
0 0 0

Suppose that M is formal. Then where "~Q" means "has the same
rational homotopy type" . Since the cohomology algebras of M and M’ agree
and satisfy Poincaré duality, Theorem 1 of [14] implies that M ~Q M’.
Therefore M is formal. 0

LEMMA 6.4. - A homotopy retract of a connected formal space is
formal.

Proof. Let X be a homotopy retract of a formal space Y. Let A
and B be Sullivan models of X and Y respectively. By taking a CDGA
model r of the retraction and a CDGA model i of the inclusion we get
a diagram of CDGA’s A ~ B ~ A such that ir is homotopic
to the identity. Since Y is formal there exists also a quasi-isomorphism
/3: B ~ (H* (B, d), 0). Then the composite A - (H* (A), 0) is

a CDGA morphism which induces the identity in homology. Thus X is

formal. D

LEMMA 6.5. - A skeleton of a formal connected CW-complex is
formal.

Proof. - Let f: S - X be the inclusion of a k-skeleton in a formal

CW-complex X. Set K = Hk(X; Q). Let A be
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a Sullivan model of X. The formality of X implies that there exists a
quasi-isomorphism (H* (X ; Q), 0). The map f : S - X admits
a minimal relative Sullivan model cP: A -+ (A 0 /B W, d). By minimality
and since f is k-connected we have that W = Wk n ker d
is isomorphic to K. Let C be a complement of Wk n ker d in W. The
composite H* ( f )~x: A -~ (H* (S, Q), 0) can be extended in an algebra map
a: A (9 H* (S’, ~) by sending Wk n ker d bijectively on K and C
to 0. Since = 0, ~x commutes with the differential hence it

is a CDGA morphism. Moreover it induces an isomorphism in homology.
Therefore is a CDGA-model of both ApL (S) and (H* (S, Q), 0),
hence S is formal. 0

PROPOSITION 6.6. - Let M be a closed simply-connected manifold
and let I~ &#x3E; 1. If F(M, k) is formal then M is formal.

Proof. Set m = dim m. The configuration space F(M, k) is the

complement in of the fat diagonal which is of dimension  A

general position argument implies then that the inclusion i: F(M, k) ~-~ Mk
is (m - 2)-connected (that is is surjective and is an

isomorphism) .
0

Set M= The simple connectivity and Poincar6 duality imply
0 0

that the cohomological dimension of M is x m - 2, hence M has the
homotopy type of a CW-complex of dimension  m - 2. Moreover the

0

inclusion M is (m - 1 )-connected and the same is true for
0

the self-product map 3 x k: (H) ~ -~ M . Consider the inclusion of the first
0 0 0 0

factor (M) kand the projection on the first factor pi : ---~H.

The configuration space F(M, k) can be realized by a CW-complex
and let Fm-2 be its (m-2)-skeleton. Then the inclusion map f: Fm-2 - Mk
is (m - 2)-connected.

Collecting this data we get the following solid arrow diagram
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Since F’n-2 is of dimension m - 2 is (m - 2)-connected there
exists a lift g making the top square homotopy commutative. Since f and
i are (m - 2)-connected is (m - I )-connected, the lift g is (m - 2)
connected.

0

Since M has the homotopy type of a CW-complex of dimension m - 2,
we can lift il along the (m - 2)-connected map g into a map h making

0

the bottom triangle homotopy commutative. Therefore M is a homotopy
retract of Fm-2.

Suppose that F(M, k) is formal. Then by Lemma 6.5 its skeleton
0

F’n-2 is also formal. This implies by Lemma 6.4 that M is formal and by
Lemma 6.3 that M is formal. 0

Open problems. - We finish by a few open problems:
- Can we get rid of the 2-connectivity hypothesis ? It is interesting to

note that Levitt and Klein have also this connectivity restriction. This is
related to the possibility of "knotting" the inclusion A ---&#x3E; llil x M.

Added in proof: by the recent work of Longoni and Salvatore (to
appear in Topology) we know that 0-connected is not enough.

- Is it possible to build a CDGA model for F(M, k) when I~ &#x3E; 3?
This problem has been solved by Fulton-McPherson and Kriz for smooth
projective varieties but the problem for non formal spaces is still very open.
In a paper in preparation ([10]) we will show how to build a dgmodule model
(over the CDGA out of a Poincar6 duality CDGA model (A, d) of M.
Moreover this model has a natural structure of CDGA and it generalizes
the Kriz model. However it seems to be delicate to show that it is indeed a

CDGA model of F(M, k). The difficulty is also related to knotting problems
(or to put it in other words, to the fact that the codimension of the fat

diagonal in M~ is too low.)
- Is it true that any CDGA whose cohomology satisfies Poincaré

duality is weakly equivalent to a differential Poincaré duality algebra ? (This
is an old problem in the folklore of Rational Homotopy Theory.)
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