We give a counter-example of the following conjecture: if the reduced mod 2 cohomology of any 1-connected polyGEM is of finite type and is not trivial, then it contains at least one element of infinite height, i.e., non nilpotent.
On construit un contre-exemple de la conjecture suivante : si la cohomologie modulo 2 réduite d'un polyGEM 1-connexe quelconque est de type fini et si elle n'est pas réduite à (0), alors elle contient au moins un élément non nilpotent.
Mot clés : polyGEM, espaces de Milgram, suite spectrale d'Eilenberg-Moore
Keywords: polyGEM, Milgram spaces, Eilenberg-Moore spectral sequences
Jiang, Donghua 1
@article{AIF_2004__54_4_1053_0, author = {Jiang, Donghua}, title = {Un {3-polyGEM} de cohomologie modulo 2 nilpotente}, journal = {Annales de l'Institut Fourier}, pages = {1053--1072}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {54}, number = {4}, year = {2004}, doi = {10.5802/aif.2043}, zbl = {1065.55002}, mrnumber = {2111021}, language = {fr}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2043/} }
TY - JOUR AU - Jiang, Donghua TI - Un 3-polyGEM de cohomologie modulo 2 nilpotente JO - Annales de l'Institut Fourier PY - 2004 SP - 1053 EP - 1072 VL - 54 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2043/ DO - 10.5802/aif.2043 LA - fr ID - AIF_2004__54_4_1053_0 ER -
%0 Journal Article %A Jiang, Donghua %T Un 3-polyGEM de cohomologie modulo 2 nilpotente %J Annales de l'Institut Fourier %D 2004 %P 1053-1072 %V 54 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2043/ %R 10.5802/aif.2043 %G fr %F AIF_2004__54_4_1053_0
Jiang, Donghua. Un 3-polyGEM de cohomologie modulo 2 nilpotente. Annales de l'Institut Fourier, Volume 54 (2004) no. 4, pp. 1053-1072. doi : 10.5802/aif.2043. https://aif.centre-mersenne.org/articles/10.5802/aif.2043/
[1] Whitehead products and cohomology operations, Quart. J. Math. Oxford Ser. (2), Volume 15 (1964), pp. 116-120 | MR | Zbl
[2] Communication privée (2003)
[3] Cellular spaces, null spaces and homotopy localization, Lecture Notes in Mathematics, 1622, Springer-Verlag, Berlin, 1996 | MR | Zbl
[4] Mod loop space homology, Invent. Math, Volume 95 (1989) no. 2, pp. 247-262 | EuDML | MR | Zbl
[5] The transcendence degree of the mod cohomology of finite Postnikov systems, Stable and unstable homotopy.Toronto, Fields Inst. (1996), pp. 111-130 | Zbl
[6] On secondary cohomology operations, Math. Scand, Volume 12 (1963), pp. 57-82 | EuDML | MR | Zbl
[7] À propos de conjectures de Serre et Sullivan, Invent. Math, Volume 83 (1986) no. 3, pp. 593-603 | EuDML | MR | Zbl
[8] Sur les groupes d'homotopie des espaces dont la cohomologie modulo est nilpotente, Israel J. Math, Volume 66 (1989) no. 1-3, pp. 260-273 | MR | Zbl
[9] On the homotopy groups of a finite-dimensional space, Comment. Math. Helv., Volume 59 (1984) no. 2, pp. 253-257 | EuDML | MR | Zbl
[10] The structure over the Steenrod algebra of some 2-stage Postnikov systems, Quart. J. Math. Oxford Ser. (2), Volume 20 (1969), pp. 161-169 | MR | Zbl
[11] On the structure of Hopf algebras, Annals of Mathematics (2), Volume 81 (1965), pp. 211-264 | MR | Zbl
[12] Cohomologie modulo des complexes d'Eilenberg-MacLane, Comment. Math. Helv, Volume 27 (1953), pp. 198-232 | MR | Zbl
[13] The cohomology of stable two stage Postnikov systems, Illinois J. Math, Volume 11 (1967), pp. 310-329 | MR | Zbl
[14] Cohomology operations, Lectures by N.E. Steenrod written and revised by D.B.A. Epstein (Annals of Mathematics Studies), Volume 50 (1962) | Zbl
Cited by Sources: