Exponentially long time stability for non-linearizable analytic germs of ( n ,0).
Annales de l'Institut Fourier, Volume 54 (2004) no. 4, pp. 989-1004.

We study the Siegel-Schröder center problem on the linearization of analytic germs of diffeomorphisms in several complex variables, in the Gevrey-s, s>0 category. We introduce a new arithmetical condition of Bruno type on the linear part of the given germ, which ensures the existence of a Gevrey-s formal linearization. We use this fact to prove the effective stability, i.e. stability for finite but long time, of neighborhoods of the origin, for the analytic germ.

Nous étudions le problème du centre de Siegel-Schröder, sur la linéarisation de germes analytiques de plusieurs variables complexes, dans la catégorie Gevrey-s. Nous introduisons une nouvelle condition arithmétique de type de Bruno, sur la partie linéaire du germe, qui assure l’existence d’une linéarisation formelle Gevrey-s. Nous l’utilisons pour démontrer la stabilité effective, c’est-à-dire stabilité pour un temps fini mais long, d’un voisinage du point fixe, pour le germe analytique.

DOI: 10.5802/aif.2040
Classification: 37F50, 70H14
Keywords: Siegel center problem, Gevrey class, Bruno condition, effective stability, Nekoroshev like estimates
Mot clés : problème du centre de Siegel, classe Gevrey, condition de Bruno, stabilité effective, estimations type Nekoroshev

Carletti, Timoteo 1

1 Scuola Normale Superiore, piazza dei Cavalieri 7, 56126 Pisa (Italie)
@article{AIF_2004__54_4_989_0,
     author = {Carletti, Timoteo},
     title = {Exponentially long time stability for non-linearizable analytic germs of $({\mathbb {C}}^n,0)$.},
     journal = {Annales de l'Institut Fourier},
     pages = {989--1004},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {54},
     number = {4},
     year = {2004},
     doi = {10.5802/aif.2040},
     zbl = {1063.37043},
     mrnumber = {2111018},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2040/}
}
TY  - JOUR
AU  - Carletti, Timoteo
TI  - Exponentially long time stability for non-linearizable analytic germs of $({\mathbb {C}}^n,0)$.
JO  - Annales de l'Institut Fourier
PY  - 2004
SP  - 989
EP  - 1004
VL  - 54
IS  - 4
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2040/
DO  - 10.5802/aif.2040
LA  - en
ID  - AIF_2004__54_4_989_0
ER  - 
%0 Journal Article
%A Carletti, Timoteo
%T Exponentially long time stability for non-linearizable analytic germs of $({\mathbb {C}}^n,0)$.
%J Annales de l'Institut Fourier
%D 2004
%P 989-1004
%V 54
%N 4
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2040/
%R 10.5802/aif.2040
%G en
%F AIF_2004__54_4_989_0
Carletti, Timoteo. Exponentially long time stability for non-linearizable analytic germs of $({\mathbb {C}}^n,0)$.. Annales de l'Institut Fourier, Volume 54 (2004) no. 4, pp. 989-1004. doi : 10.5802/aif.2040. https://aif.centre-mersenne.org/articles/10.5802/aif.2040/

[Ba] W. Balser From Divergent Power Series to Analytic Functions. Theory and Applications of Multisummable Power Series, Lectures Notes in Mathematics, 1582, Springer, 1994 | MR | Zbl

[Br] A.D. Bruno Analytical form of differential equations, Transactions Moscow Math.Soc, Volume 25 (1971), pp. 131-288 | Zbl

[Br] A.D. Bruno Analytical form of differential equations, Transactions Moscow Math. Soc., Volume 26 (1972), pp. 199-239 | Zbl

[Ca] T. Carletti The Lagrange inversion formula on non--Archimedean fields. Non--Analytical Form of Differential and Finite Difference Equations, DCDS Séries A, Volume 9 (2003) no. 4, pp. 835-858 | MR | Zbl

[CM] T. Carletti; S. Marmi Linearization of analytic and non--analytic germs of diffeomorphisms of (,0), Bull. Soc. Math. de France, Volume 128 (2000), pp. 69-85 | Numdam | MR | Zbl

[GDFGS] A. Giorgilli; A. Fontich; L. Galgani; C. Simó Effective stability for a Hamiltonian system near an elliptic equilibrium point with an application to the restricted three body problem, J. of Differential Equations, Volume 77 (1989), pp. 167-198 | MR | Zbl

[Gr] A. Gray A fixed point theorem for small divisors problems, J. Diff. Eq, Volume 18 (1975), pp. 346-365 | MR | Zbl

[He] M.R. Herman; Mebkhout Seneor Eds. Recent Results and Some Open Questions on Siegel's Linearization Theorem of Germs of Complex Analytic Diffeomorphisms of n near a Fixed Point, Proc. VIII Int. Conf. Math. Phys. (1986), pp. 138-184

[HW] G.H. Hardy; E.M. Wright An introduction to the theory of numbers, Oxford Univ. Press | MR | Zbl

[Ko] G. Koenigs Recherches sur les équations fonctionelles, Ann. Sc. E.N.S., Volume 1 (1884) no. supplément, pp. 3-41 | JFM | Numdam | MR

[MMY] S. Marmi; P. Moussa; J.-C. Yoccoz The Bruno functions and their regularity properties, Communications in Mathematical Physics, Volume 186 (1997), pp. 265-293 | MR | Zbl

[Ne] N. N. Nekhoroshev An exponential estimate of the time of stability of nearly integrable Hamiltonian systems, Usp. Math. Nauk, Volume 32 (1977), pp. 5-66 | MR | Zbl

[Ne] N.N. Nekhoroshev An exponential estimate of the time of stability of nearly-integrable Hamiltonian systems., Russ. Math. Surv., Volume 32 (1977) no. 6, pp. 1-65 | MR | Zbl

[PM1] R. Pérez--Marco Sur les dynamiques holomorphes non linéarisables et une conjecture de V.I. Arnold, Ann. scient. Éc. Norm. Sup. (4), Volume 26 (1993), pp. 565-644 | Numdam | MR | Zbl

[PM2] R. Pérez--Marco Sur la dynamique des germes de difféomorphismes de ( , 0 ) et des difféomorphismes analytiques du cercle (1990) (Thèse Université de Paris Sud)

[Po] H. Poincaré Œuvres, tome I, Gauthier--Villars, Paris, 1917

[Ra] J.--P. Ramis Séries divergentes et Théorie asymptotiques, Publ. Journées X--UPS (1991), pp. 1-67

[Si] C.L. Siegel Iteration of analytic functions, Annals of Mathematics, Volume 43 (1942), pp. 807-812 | MR | Zbl

[St] S. Sternberg Infinite Lie groups and the formal aspects of dynamical systems, J. Math. Mech, Volume 10 (1961), pp. 451-474 | MR | Zbl

[Yo] J.-C. Yoccoz Théorème de Siegel, polynômes quadratiques et nombres de Bruno, Astérisque, Volume 231 (1995), pp. 3-88 | MR

Cited by Sources: