We study the Siegel-Schröder center problem on the linearization of analytic germs of diffeomorphisms in several complex variables, in the Gevrey-, category. We introduce a new arithmetical condition of Bruno type on the linear part of the given germ, which ensures the existence of a Gevrey- formal linearization. We use this fact to prove the effective stability, i.e. stability for finite but long time, of neighborhoods of the origin, for the analytic germ.
Nous étudions le problème du centre de Siegel-Schröder, sur la linéarisation de germes analytiques de plusieurs variables complexes, dans la catégorie Gevrey-. Nous introduisons une nouvelle condition arithmétique de type de Bruno, sur la partie linéaire du germe, qui assure l’existence d’une linéarisation formelle Gevrey-. Nous l’utilisons pour démontrer la stabilité effective, c’est-à-dire stabilité pour un temps fini mais long, d’un voisinage du point fixe, pour le germe analytique.
Keywords: Siegel center problem, Gevrey class, Bruno condition, effective stability, Nekoroshev like estimates
Mot clés : problème du centre de Siegel, classe Gevrey, condition de Bruno, stabilité effective, estimations type Nekoroshev
Carletti, Timoteo 1
@article{AIF_2004__54_4_989_0, author = {Carletti, Timoteo}, title = {Exponentially long time stability for non-linearizable analytic germs of $({\mathbb {C}}^n,0)$.}, journal = {Annales de l'Institut Fourier}, pages = {989--1004}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {54}, number = {4}, year = {2004}, doi = {10.5802/aif.2040}, zbl = {1063.37043}, mrnumber = {2111018}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2040/} }
TY - JOUR AU - Carletti, Timoteo TI - Exponentially long time stability for non-linearizable analytic germs of $({\mathbb {C}}^n,0)$. JO - Annales de l'Institut Fourier PY - 2004 SP - 989 EP - 1004 VL - 54 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2040/ DO - 10.5802/aif.2040 LA - en ID - AIF_2004__54_4_989_0 ER -
%0 Journal Article %A Carletti, Timoteo %T Exponentially long time stability for non-linearizable analytic germs of $({\mathbb {C}}^n,0)$. %J Annales de l'Institut Fourier %D 2004 %P 989-1004 %V 54 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2040/ %R 10.5802/aif.2040 %G en %F AIF_2004__54_4_989_0
Carletti, Timoteo. Exponentially long time stability for non-linearizable analytic germs of $({\mathbb {C}}^n,0)$.. Annales de l'Institut Fourier, Volume 54 (2004) no. 4, pp. 989-1004. doi : 10.5802/aif.2040. https://aif.centre-mersenne.org/articles/10.5802/aif.2040/
[Ba] From Divergent Power Series to Analytic Functions. Theory and Applications of Multisummable Power Series, Lectures Notes in Mathematics, 1582, Springer, 1994 | MR | Zbl
[Br] Analytical form of differential equations, Transactions Moscow Math.Soc, Volume 25 (1971), pp. 131-288 | Zbl
[Br] Analytical form of differential equations, Transactions Moscow Math. Soc., Volume 26 (1972), pp. 199-239 | Zbl
[Ca] The Lagrange inversion formula on non--Archimedean fields. Non--Analytical Form of Differential and Finite Difference Equations, DCDS Séries A, Volume 9 (2003) no. 4, pp. 835-858 | MR | Zbl
[CM] Linearization of analytic and non--analytic germs of diffeomorphisms of , Bull. Soc. Math. de France, Volume 128 (2000), pp. 69-85 | Numdam | MR | Zbl
[GDFGS] Effective stability for a Hamiltonian system near an elliptic equilibrium point with an application to the restricted three body problem, J. of Differential Equations, Volume 77 (1989), pp. 167-198 | MR | Zbl
[Gr] A fixed point theorem for small divisors problems, J. Diff. Eq, Volume 18 (1975), pp. 346-365 | MR | Zbl
[He] Recent Results and Some Open Questions on Siegel's Linearization Theorem of Germs of Complex Analytic Diffeomorphisms of near a Fixed Point, Proc. VIII Int. Conf. Math. Phys. (1986), pp. 138-184
[HW] An introduction to the theory of numbers, Oxford Univ. Press | MR | Zbl
[Ko] Recherches sur les équations fonctionelles, Ann. Sc. E.N.S., Volume 1 (1884) no. supplément, pp. 3-41 | JFM | Numdam | MR
[MMY] The Bruno functions and their regularity properties, Communications in Mathematical Physics, Volume 186 (1997), pp. 265-293 | MR | Zbl
[Ne] An exponential estimate of the time of stability of nearly integrable Hamiltonian systems, Usp. Math. Nauk, Volume 32 (1977), pp. 5-66 | MR | Zbl
[Ne] An exponential estimate of the time of stability of nearly-integrable Hamiltonian systems., Russ. Math. Surv., Volume 32 (1977) no. 6, pp. 1-65 | MR | Zbl
[PM1] Sur les dynamiques holomorphes non linéarisables et une conjecture de V.I. Arnold, Ann. scient. Éc. Norm. Sup. (4), Volume 26 (1993), pp. 565-644 | Numdam | MR | Zbl
[PM2] Sur la dynamique des germes de difféomorphismes de et des difféomorphismes analytiques du cercle (1990) (Thèse Université de Paris Sud)
[Po] Œuvres, tome I, Gauthier--Villars, Paris, 1917
[Ra] Séries divergentes et Théorie asymptotiques, Publ. Journées X--UPS (1991), pp. 1-67
[Si] Iteration of analytic functions, Annals of Mathematics, Volume 43 (1942), pp. 807-812 | MR | Zbl
[St] Infinite Lie groups and the formal aspects of dynamical systems, J. Math. Mech, Volume 10 (1961), pp. 451-474 | MR | Zbl
[Yo] Théorème de Siegel, polynômes quadratiques et nombres de Bruno, Astérisque, Volume 231 (1995), pp. 3-88 | MR
Cited by Sources: