In this work, we prove first the Shadow Lemma on geometrically finite manifolds with variable negative curvature. This result gives sharp estimates on the decreasing behavior of the Patterson measure of shadows, on the boundary at infinity of the manifold. We deduce a result of nondivergence of the horospheres of the manifold. More precisely, we prove the tightness of natural averages on large horospherical balls ; in other words, there is no loss of mass due to the lack of compacity of the manifold.
Dans cet article, nous établissons dans un premier temps un lemme de l'ombre dans le cas des variétés géométriquement finies à courbure négative variable. Ce théorème donne des estimées très précises de la décroissance de la mesure de Patterson des ombres, sur le bord à l'infini de telles variétés. Nous en déduisons un résultat de non divergence des horosphères. Plus précisément, nous considérons certaines moyennes naturelles sur de grandes boules horosphériques, dont nous montrons la tension lorsque le rayon des boules tend vers l'infini; en d'autres termes, la non compacité de la variété n'entraîne pas de perte de masse pour ces moyennes.
Mot clés : horosphères, variété géométriquement finie, non divergence, lemme de l'ombre, mesure de Patterson
Keywords: horospheres, geometrically finite manifolds, nondivergence (or tightness), Shadow Lemma, Patterson measure
Schapira, Barbara 1
@article{AIF_2004__54_4_939_0, author = {Schapira, Barbara}, title = {Lemme de l'ombre et non divergence des horosph\`eres d'une vari\'et\'e g\'eom\'etriquement finie}, journal = {Annales de l'Institut Fourier}, pages = {939--987}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {54}, number = {4}, year = {2004}, doi = {10.5802/aif.2039}, zbl = {1063.37029}, mrnumber = {2111017}, language = {fr}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2039/} }
TY - JOUR AU - Schapira, Barbara TI - Lemme de l'ombre et non divergence des horosphères d'une variété géométriquement finie JO - Annales de l'Institut Fourier PY - 2004 SP - 939 EP - 987 VL - 54 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2039/ DO - 10.5802/aif.2039 LA - fr ID - AIF_2004__54_4_939_0 ER -
%0 Journal Article %A Schapira, Barbara %T Lemme de l'ombre et non divergence des horosphères d'une variété géométriquement finie %J Annales de l'Institut Fourier %D 2004 %P 939-987 %V 54 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2039/ %R 10.5802/aif.2039 %G fr %F AIF_2004__54_4_939_0
Schapira, Barbara. Lemme de l'ombre et non divergence des horosphères d'une variété géométriquement finie. Annales de l'Institut Fourier, Volume 54 (2004) no. 4, pp. 939-987. doi : 10.5802/aif.2039. https://aif.centre-mersenne.org/articles/10.5802/aif.2039/
[Bo] Geometrical finiteness with variable negative curvature, Duke Math. J., Volume 77 (1995), pp. 229-274 | MR | Zbl
[Bou] Structure conforme au bord et flot géodésique d'un -espace, Enseign. Math. (2), Volume 41 (1995), pp. 63-102 | MR | Zbl
[CDP] Géométrie et théorie des groupes, Les groupes hyperboliques de Gromov (Lecture Notes in Math.), Volume 1441 (1990) | Zbl
[CI] Limit sets of discrete groups of isometries of exotic hyperbolic spaces, Trans. Amer. Math. Soc., Volume 351 (1999), pp. 1507-1530 | MR | Zbl
[Da1] On uniformly distributed orbits of certain horocycle flows, Ergodic Theory Dyn. Systems, Volume 2 (1982), pp. 139-158 | MR | Zbl
[Da2] On Orbits of unipotent flows on homogeneous spaces, Ergodic Theory Dyn. Systems, Volume 4 (1984), pp. 25-34 | MR | Zbl
[Da3] On Orbits of unipotent flows on homogeneous spaces, II, Ergodic Theory Dyn. Systems, Volume 6 (1986), pp. 167-182 | MR | Zbl
[Dal] Topologie du feuilletage fortement stable, Ann. Inst. Fourier, Volume 50 (2000) no. 3, pp. 981-993 | Numdam | MR | Zbl
[DOP] Séries de Poincaré des groupes géométriquement finis, Israel J. Math., Volume 118 (2000), pp. 109-124 | MR | Zbl
[Eb] Geodesic flows on negatively curved manifolds I, Ann. of Math. (2), Volume 95 (1972), pp. 492-510 | MR | Zbl
[EF] Masse des pointes, temps de retour et enroulements en courbure négative, Bull. Soc. Math. France, Volume 130 (2002) no. 3, pp. 349-386 | Numdam | MR | Zbl
[GH] Sur les groupes hyperboliques d'après Mikhael Gromov (Berne, 1988) (Progr. Math.), Volume vol. 83 (1990), pp. 1-25 | Zbl
[He] Fuchsian groups and transitive horocycles, Duke Math. J., Volume 2 (1936), pp. 530-542 | JFM | MR | Zbl
[HP1] On the rigidity of discrete isometry groups of negatively curved spaces, Comment. Math. Helv., Volume 72 (1997), pp. 349-388 | MR | Zbl
[HP2] Counting orbit points in coverings of negatively curved manifolds and Hausdorff dimension of cusp excursions (2004) (à paraître dans Ergodic Theory Dyn. Systems) | MR | Zbl
[Ka] Invariant measures of the geodesic flow and measures at infinity on negatively curved manifolds, Ann. IHP, Physique Théorique, Volume 53 (1990) no. 4, pp. 361-393 | Numdam | MR | Zbl
[Ma] On the action of unipotent groups in the space of lattices, Proc. of the Summer School on Groups Representations (Bolyai Janos Math. Soc., Budapest) (1971), pp. 365-370 | Zbl
[MW] Nondivergence of horocyclic flows on moduli space, J. reine angew. Math., Volume 552 (2002), pp. 131-177 | MR | Zbl
[Ne] On the Patterson-Sullivan measure for geometrically finite groups acting on complex or quaternionic hyperbolic spaces, Geom. Dedicata, Volume 97 (2003), pp. 215-249 | MR | Zbl
[Pa] The limit set of a Fuchsian group, Acta Math., Volume 136 (1976) no. 3-4, pp. 241-273 | MR | Zbl
[Pe1] Mesures de Hausdorff de l'ensemble limite de groupes kleiniens géométriquement finis (1999-2000) (Notes du groupe de travail de systèmes dynamiques, Orléans)
[Pe2] On the Patterson-Sullivan measure of some discrete groups of isometries, Israel J. Math., Volume 133 (2003), pp. 77-88 | MR | Zbl
[Ro] Sur la fonction orbitale des groupes discrets en courbure négative, Ann. Inst. Fourier, Volume 52 (2002) no. 1, pp. 145-151 | Numdam | MR | Zbl
[Ru] Ergodic behaviour of Sullivan's geometric measure on a geometrically finite hyperbolic manifold, Ergodic Theory Dynam. Systems, Volume 2 (1982), pp. 491-512 | MR | Zbl
[S1] The density at infinity of a discrete group of hyperbolic motions, Publ. Math. IHÉS, Volume 50 (1979), pp. 171-202 | Numdam | MR | Zbl
[S2] Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups, Acta Math., Volume 153 (1984), pp. 259-277 | MR | Zbl
[Sc] Equidistribution of the horocycles of a geometrically finite surface (2003) (Prépublication du MAPMO, arxiv preprint math.DS/0306258) | MR | Zbl
[SV] The Patterson measure for geometrically finite groups with parabolic elements, new and old, Proc. London Math. Soc. (3), Volume 71 (1995) no. 1, pp. 197-220 | MR | Zbl
[Yu] The ergodic Theory of discrete isometry groups on manifolds of variable negative curvature, Trans. Am. Math. Soc., Volume 348 (1996), pp. 4965-5005 | MR | Zbl
Cited by Sources: