
AN

N
A
L
E
S
D
E

L’INSTI
T

U
T
F
O
U
R

IE
R

ANNALES
DE

L’INSTITUT FOURIER

Timoteo CARLETTI

Exponentially long time stability for non-linearizable analytic germs of
(Cn, 0).
Tome 54, no 4 (2004), p. 989-1004.

<http://aif.cedram.org/item?id=AIF_2004__54_4_989_0>

© Association des Annales de l’institut Fourier, 2004, tous droits
réservés.

L’accès aux articles de la revue « Annales de l’institut Fourier »
(http://aif.cedram.org/), implique l’accord avec les conditions
générales d’utilisation (http://aif.cedram.org/legal/). Toute re-
production en tout ou partie cet article sous quelque forme que ce
soit pour tout usage autre que l’utilisation à fin strictement per-
sonnelle du copiste est constitutive d’une infraction pénale. Toute
copie ou impression de ce fichier doit contenir la présente mention
de copyright.

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://aif.cedram.org/item?id=AIF_2004__54_4_989_0
http://aif.cedram.org/
http://aif.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/


989

EXPONENTIALLY LONG TIME STABILITY FOR

NON-LINEARIZABLE ANALYTIC GERMS OF (Cn, 0)

by Timoteo CARLETTI

1. Introduction.

In this paper we consider the Siegel-Schr6der center problem [He],
[CM], [Ca] in some class of ultradifferentiable germs of (C~,0), n &#x3E; 1; let
us consider two classes of formal power series ,A1 C ,~1.2 C [[zi , ... , 
closed w.r.t. to derivation and composition, let F E and call DF(0) =
A E GL(n, C), we say that F is linearizable in ,,42 if there exists H E A2,
normalized with DH(0) = E, which solves 1:

where RA (z) = Az. In the following we will assume A to be diagonal with
eigenvalues of unit modulus Ai,..., An , thus A = diag Ai,..., An.

If both and ,A.2 coincide with the ring of formal power series
then generically the formal linearization holds if and only if A is non-

resonant, namely for all a C N~ such that and for

all j E {I, ... , n~ then ÀQ - 0 (where we used the standard notation

When F is a germ of analytic diffeomorphisms defined in a neighbor-
hood of the origin and we want to solve (1.1) in the same class of analytic

Keywords: Siegel center problem - Gevrey class - Bruno condition - Effective stabi-
lity - Nekoroshev like estimates.
Math. classification: 37F50 - 70H14.
1 Here F o H means the composition of F and H; in the following we will denote the
composition of F n-times with itself, by Fn instead of 
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germs, we have to consider several cases. If A is the Poincaré domain,
namely I  1 or 1  1, then Koenigs [Ko] and
Poincaré [Po] proved that every analytic germ F E such that

F(0) = 0 and = A, is analytically linearizable. When A is not in
the Poincaré domain, we say that it is in the Siegel domain; the question
is harder and some additional arithmetical conditions on are needed

(see ~He~ ~ 17, 158).
~ and let us define for non-resonant Ai,..., An:

we say that A verifies a Diophantine condition of type (~y, T) if there

exist -y &#x3E; 0 and T &#x3E; n - 1 such that for all ,~3 E ~01 we have
O(!{3I) ~ Siegel [Si] in 1942 for the n = 1 case and then Sternberg
[St] and Gray [Gr] in the general case proved that if A verifies a Diophantine
condition then the linearization problem has an analytic solution. Bruno

[Br] weakened the arithmetical condition by asking the convergence of the
series Ek l~g ~ 2k 2k~+1 ~ . We remark that in the one dimensional case the
Bruno condition 2 is optimal, as proved by Yoccoz [Yo].

In [CM] authors studied the Siegel-Schroder center problem in the
case of general algebras of ultradifferentiable germs of (C, 0), including the
Gevrey case. In [Ca] the multidimensional case is considered: if A2
and A verifies a Bruno condition, then every F C ,A1 with F(O) = 0 and
DF(0) = A is linearizable in A2, whereas if is properly contained in A2
new conditions weaker than Bruno are sufficient to ensure linearizability in
./~.2 .

In this paper we consider in detail the case where is the ring of

germs of analytic diffeomorphisms at the origin of n &#x3E; 1 complex variables,
and ,A2 is the algebra of Gevrey-s, s &#x3E; 0, formal power series: the Gevrey-s
linearizatiorl of analytic germs.

be a formal power series, then we

say that it is Gevrey-s [Ba], [Ra], s &#x3E; 0, if there exist two positive constants

Cl, C2 such that:

2 In this case let w E (0,1) B Q such that A = and let be the denominators
of the convergents [HW] to w, then the Bruno condition is equivalent to the convergence
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We denote the class of all formal vector valued power series Gevrey-s by
Cs . It is closed w.r.t. derivation and composition.

In the Gevrey-s case the arithmetical condition introduced in [CM],
[Ca] will be called Bruno-s condition, s &#x3E; 0: for short A E if there exists

a strictly increasing sequence of positive integer (Pk)k such that:

where K (a) is defined by

Remark l.l. - This definition recall the classical one of Bruno [Br],
where first one suppose the existence of a strictly increasing sequence of

positive integer such that (1.4) holds, then one can prove (see [Br] § IV
p. 222) that one can take an exponentially growing sequence, e.g. p~ = 2~ .
This holds also in our case, in fact we can prove that (1.4)is equivalent to:

I - 
, 

_ _ ~ /

Let us give a sketch of the proof of this claim. Take a sequence (pk) for
which (1.4) holds, then we can find sequences of positive integer and

(1k)k such that: mo = 0, l~ &#x3E; 1, and

The function SZ-1 (p) is increasing, hence:

Take any &#x3E; 1, the corresponding /’1; ( a) and fix I
Then, dividing the sum of (1.4) into pieces from mh to mh -f- Lh - 1, for
h = 0, ... , ~ (c~ ) , and using estimate (1.5) for each piece, we get:

B lIG-V /

Now the claim follows remarking that

For real number, the Bruno-s condition can be slightly weakened (see
[CM]); let o E (o, 1) ~ Q , then the Bruno-s, s &#x3E; 0, condition reads:

/ B.
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where (qk)k are the denominators of the convergents to cv. We remark that
in both cases the new conditions are weaker than Bruno condition, which
is recovered when s = 0. In dimension one we prove that the set Us is

PSL(2, Z)-invariant (see remark 3.1). The main result of [Ca] in the case
of Gevrey-s classes reads:

THEOREM 1.2 (Gevrey-s linearization). - Let Al, ... , An be com-
plex numbers of unit modulus and A = diag(Ai,..., An) ; let

be the isotropic polydisk of radius 1 and let F : CCn be an analytic
function, such that F(z) = Az + f(z), with f(0) = Df (0) = 0. If A is
non-resonant and verifies a Bruno-s, s &#x3E; 0, condition (1.4) (or (1.6) when
n = 1), then there exists a formal Gevrey-s linearization if which solves
(l.l~.

The aim of this paper is to show that the Gevrey character of the
formal linearization can give information concerning the dynamics of the
analytic germ. Let F(z) = Az + f (z) be a germ of analytic diffeomorphism
verifying the hypothesis of Theorem 1.2, assume moreover F not to be

analytically linearizable. We will show that even if there is not Siegel disk,
where the dynamics of F is conjugate to the dynamics of its linear part, we
have an open neighborhood of the origin which "behaves as a Siegel disk"
under the iterates of F for finite but long time, which results exponentially
long: the effective stability [GDFGS] of the fixed point.

In the case of analytic linearization, (z) 1, i = 1, ... , n, (which is
well defined sufficiently close to the origin because H is tangent to the

identity) is constant along the orbits, namely it is a first integral and
is bounded for all m and sufficiently small .

We will prove that any non-zero zo belonging to a polydisk of
sufficiently small radius r &#x3E; 0, can be iterate a number of times

K = being s &#x3E; 0 the Gevrey exponent of the formal
linearization, and we can find an almost first integral: a function which
varies by a quantity of order r under m ~ K iterations, which implies that

Fm (zo) is well defined and bounded for m  K. More precisely we prove
the following.

THEOREM 1.3. - Let Ai,..., An be complex numbers of unit mod-
ulus and A = diag(Ai, ... , A,); let F : en be an analytic and
univalent function, such that F(z) - Az + f(z), with f (0) = Df (0) = 0. If
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A is non-resonant and verifies a Bruno-s, s &#x3E; 0, condition (1.4) (or (1.6)
when n = 1), then for all sufficiently small 0  r,,,,  1, there exist positive
constants A**, B**, C** such that for all 0  Izol  r**/2, the m-th iterate
of zo by F is well defined and verifies = C**r**, for all

The hypothesis on the domain for F is a natural normalization

condition being the whole problem invariant by homothety.

In Section 3 we compare our stability result with the stronger results
which can be proved using Yoccoz’s renormalization method [PM2] in the
case n = 1. Moreover we discuss the relation between our Bruno-s condition

and the arithmetical condition of Perez-Marco [PM1], [PM2] ensuring that
in the non-linearizable case the fixed point is accumulate by periodic orbits.

Acknwoledgements. I am grateful to D. Sauzin for a very stimulating
discussion concerning Gevrey classes and asymptotic analysis.

2. Proof of the main Theorem.

In this part we will prove our main result, Theorem 1.3. The proof
will be divided into three steps: first we use the Gevrey-s character of
the formal linearization H, given by Theorem 1.2, to find an approximate
solution of the conjugacy equation (1.1) up to a (exponentially) small
correction (paragraph 2.1); then we prove an iterative Lemma allowing
us to control how the small error introduced in the solution propagates
(paragraph 2.2). Finally we collect all the informations to conclude the

proof (paragraph 2.3).

2.1. Determination of an approximate solution.

We apply Theorem 1.2: The formal power series solution H belongs
to Cs, as well as its inverse which solves (formally):

Since , there exist positive constants Al and Bl such
that
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For any positive integer N we consider the vectorial polynomial, sum
of homogeneous vector monomials of degree N, defined by:

’ and the Remainder Function:

The following Proposition collects some useful properties of the remainder
function.

PROPOSITION 2.1. - Let RN (z) be the remainder function defined
in (2.3~ and let cx E N", then:

2) For all 0  r  1 there exists a positive constants A2 and B2 such
that N + 1, then:

3) For all 0  r  1 and Izl  r/2 there exist positive constants
A3, B3 such that:

Where uTe used the compact notation

Proof. Statement 1) is an immediate consequence of the definition
of RN.

To prove 2) we observe that RN(z) is an analytic function on Dl, then
one gets by Cauchy’s estimates for all 0  r  1 and for all N + 1:

Recalling the Gevrey estimate (2.2) for and the analyticity of F we
obtain:

for some positive constants A2 and B2 depending on the previous constants,
on the dimension n and on F.

To prove 3) let us write the Taylor series
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then the bound on derivatives (2.6) implies the estimate (2.4) for all

Izl  r/2 and for some positive constants A3 and B3- 0

The bound (2.4) on R N (z) depends on the positive integer N, so we
can determine the value of N for which the right hand side of (2.4) attains
its minimum, that’s Poincar6’s idea of summation at the smallest term.

LEMMA 2.2 (Summation at the smallest term). - Let TZN (z) de-
finned as before and let 0  r*  1/2 then there exist positive constants
A4, B4 such that for all 0  r* we have:

where and [x] denotes the integer part of x E R.

Proof. Let us fix 0  r*  1/2, then for 0  r* by Stirling
formula we obtain:

for some positive constant A4. The right hand side of (2.8) attains its

minimum at N = B3 evaluating the value of this minimum we
get (2.7) with B4 = B3- 0

2.2. Control of the "errors".

Let us define H(z) = and R(z) = R¡;¡(z), being N the
"optimal value" obtained in Lemma 2.2. We remark that ’H(z) doesn’t
solve (2.1) but the "error", R(z), is very small: exponentially small. We
will prove that for initial conditions in a sufficiently small disk, one can
iterate an exponentially large number of times without leaving a disk, say,
of double size.

LEMMA 2.3 (Iteration lemma). - Let a, b, a and R be positive real
numbers. Let us consider the sequence of positive number defined

by:

Let
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Proof. Let us prove by induction on j that for all 0 ~ J’ ~ ~ we
have

then the claim will follow from (2.9) and the definition of K, in fact for all
j  K :

The basis of induction is easily verified; assume (2.9) for all j  K - 1, we
will prove it for j = K. By definition of and the induction hypothesis
we have:

we remark that from (2.9) with j

which ends the induction. D

Let r* as in Lemma 2.2, define p(z) = IH(z)1 for all 0  Izl  r*, then

Lemma 2.2 admits the following Corollary, which allows us to control the
function p(z) on consecutive points of an orbit of F(z).

COROLLARY 2.4. - Let 0  r*  1/2, let rl be the radius of the
maximal polydisk where H(z) is invertible and let r** = min(r*, ri). Then
there exist positive constants A*, B* such that for all 0  lzl I  r** we

have:

Proof. By definition
since )Aj ) = 1 for n, and A = diag(Àl, ..., A,), therefore:

and from Lemma 2.2 we get:
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We want to express this condition in terms of p(z) instead of to do this

we have to consider the distortion properties of H(z) and of its inverse. Let
J (z) - be the Jacobian of1t(z) and let Jl == I J (z) 1, where
rl has been defined previously. Let 0  lzl I  ri and let us call z’ _ H(z),
clearly Jiri = r2. Let us call J2 = then for

any 0   r2 there exists only one z such that z = 1t -1 (z’ ) , which
satisfies J2 ) z’ ) = 

Let r** = min(r*, rl) then from (2.11) for any 0  r** we get:

where A * = A4 and _

2.3. End of the proof.

We are now able to conclude the proof of the main Theorem 1.3. Take

any 0  Izol  r* * /2 and let us define pro - pm = p(Fm(zo)) for all
positive integer m for which Fm(zo) is well defined, by Corollary 2.4 we
have:

Let us call . , then we can apply
Lemma 2.3, being to conclude that:

This implies that H (zm) is well defined in this range of values of m, it is

not constant and it evolves only by r* * . Recalling
that zm = we also have I
for all 0  Izol  r* * / 2 and all m ~ K*.

This conclude the proof by setting A,, ~, = 2A. r* *’, B* * -B* (r*/(2r* *)) ’/,
and C* * _ ~T2 .

3. One dimensional case.

In this paper we proved that any analytic germs of diffeomorphisms
of 0) with diagonal, non-resonant linear part has an effective stability
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domain, i.e. stable up to finite but "long times", close to the fixed point,
provided the linear part verifies a new arithmetical Bruno-like condition

(1.4) depending on a parameter s &#x3E; 0.

Remark 3.1 (Invariance of 1 under the action of

PSL(2, Z)) - - The continued fraction development [HW], [MMY] of an
irrational number gives us the sequences: and Then

we introduce defined by 0-1 = 1 and for all integer 1~ &#x3E; 0:

Ok _ flk which verifies : 1/2  1  1 and qn(3n-l 1
where qk’s are the denominators of the continued fraction development of

We claim that condition Bruno-s (1.6) is equivalent to the following
one:

This can be proved by using the relations between 01 and ql, to obtain the

bound, for all integer k &#x3E; 0:

where we used the convergence of series

p. 272).
To prove the invariance of UL3, under the action of P5L(2,Z), is

enough to consider its generators: Tw + 1 and ,S’cv = For any
irrational T acts trivially being 3k(TLo) - for all k, whereas for
S we have for all 1~ &#x3E; 1. Let c.v be an irrational and

let n/ = w-1, let us also denote with a quantities given by the continued
fraction algorithm applied to c.v’, then using (3.1) one can prove:

, I

where

the claim follows.

Let us consider a slightly stronger version of the Bruno-s condition:
belongs to if:
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where (qn)n are the convergents to w.

Remark 3.2. - This new condition is stronger than Bruno-s, be-
cause the existence of the limit is required. One can construct numbers as
which verify Bs but not as follows.

Let us call for short Sk - L7=0 Fix c~ &#x3E; 13 &#x3E; 0, 6 &#x3E; 0

and to simplify take s &#x3E; (2 + 6) /log 2. We claim that one can choose large
enough positive integers l~l and ai , ... , such that:

for instance take i and inductively

Then one can take sufficiently many al’s equal to one, = 1 for

l = 1,..., 2k2 + 1, and verify that:

Then one iterate taking a sufficiently large block of large enough 
followed by a sufficiently large block of a~ = 1. The real number whose

continued fraction development is given by x = [0, a 1, ... , an , ...] , verifies
by construction Bruno-s, with s &#x3E; (2 + J)/log2, being bounded by
2ct, but it doesn’t verify 138, in fact (8k)k oscillates from values larger than
c~ to values smaller than /3, without reaching any limit.

Let us introduce two other arithmetical conditions. Let us denote by
B~ the set of irrational numbers whose convergents verify:

1rv

And a second condition as follows, be two

positive sequences of real numbers such that:

, then we define condition 8"a by:

PROPOSITION 3.3. - Let w E (0,1) B Q and let s &#x3E; 0 then we have

the follovving inclusions:

1) let wEBs, if w is not a Bruno number then w E ,13s, otherwise
- "" I
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Proof. - To prove the first statement let us write the following
identity:

where . By condition this series converges and

then its generic term goes to zero, from which we get:

Let us denote by s’ be value of the right hand side of (3.6), then clearly
s’ E [0, s]. Let us suppose s’ &#x3E; 0, but then we have for all sufficiently large
, I -

for some positive constants Cl , C2 , from which we get
from (3.6) we conclude that s’ = s. 

--0 ~~TÁ

Bruno number.

Let us prove the second statement. For any positive integer ~, using
the definition of we can write:

for all 0  1  k we have log ql  log qk then the right hand side of (3.7) is
bounded by: By hypothesis
for all k, then using - log qk # - log ql we obtain:

G-V 1

then passing to the limit on k we have:

Remark 3.4. - These new arithmetical conditions are weaker than

the Bruno one, for instance condition L3’ s is verified by numbers whose
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denominators (qk)k satisfy a growth condition like Condition

,~ implies convergence of the series:

Let us conclude recalling a stability result of P6rez-Marco [PM1],
[PM2] and compare it with our result. In [PM2] author proved (Theo-
rem V.2.1, Annexe 2 § f ) using a geometric renormalization scheme "h la
Yoccoz" valid in the one dimensional case, a stability result that can be
stated as follows:

THEOREM 3.5 (P6rez-Marco, Controle de la diffusion). -
Let w C (0,1) B Q and let (qk)k be the denominators of its convergents.
Let F be an analytic and univalent function defined in the unit disk

such that .

There exist two positive constants Cl, C2 such that ifi

then for all integer 0 ~ we have:

The meaning of the Theorem is clear: if we start inside a disk of radius

then we can apply F, up to qk times, without leaving
a disk of radius rC2/Ci. To compare this result with our effective stability
result we have to make explicit the relation between r and qk, which give
the time of "stability". Using our Bruno-s condition (3.2) we can say that
C ~ C’ for some positive constants C, C’. But from (3.3) we get

for some positive constant C3, namely there exist
positive constants C3, C4 such that:

w r , I , I

We can then restate Theorem 3.5 as follows: if Izl  r, then 

for all integer 0  m  log obtaining a better
estimate on the time of effective stability.

This improvement has been obtained thanks to a good understanding
of the geometry of the dynamics, if one would like to obtain these better
estimates also for germs in higher dimensions, one should extend the P6rez-
Marco ideas to understand the geometry of dynamics of germs in higher
dimension. This could be very difficult whereas our results are easy to adapt
to any dimension.
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We end with a last remark related again to the work of P6rez-Marco.

Remark 3.6. - P6rez-Marco proved in [PM1], [PM2] that any non-
analytically linearizable analytic germ, univalent in the unit disk, whose
multiplier at the fixed point, verifies the following arithmetical condition:

has a sequence of periodic orbits accumulating the fixed point, whose
periods, (qnk) k, make the Bruno series diverging.

Our Bruno-s condition implies (3.10), in fact from (3.2) we get:

we can let N grow and using standard number theory results concerning the
convergents, we obtain the P6rez-Marco condition. Then we can suppose
these periodic orbits accumulating the fixed point to "produce the effective
stability: preventing the orbits from a too fast escape", a situation similar to
the one holding in the Nekoroshev Theorem for Hamiltonian systems [Ne],
where the resonant web confines the flow for exponentially long times. It
would be very interesting to know whether a similar phenomenon takes
place in higher dimension.

We conclude by pointing out that our method gives us a stability
exponent depending on the Gevrey exponent and independent of the

dimension: the bigger is the exponent, longer is the time interval of stability,
we can always take s small enough to have a very long time of stability.
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