[Temps de stabilité exponentiellement longs pour les germes analytiques de non linéarisables.]
Nous étudions le problème du centre de Siegel-Schröder, sur la linéarisation de germes analytiques de plusieurs variables complexes, dans la catégorie Gevrey-. Nous introduisons une nouvelle condition arithmétique de type de Bruno, sur la partie linéaire du germe, qui assure l’existence d’une linéarisation formelle Gevrey-. Nous l’utilisons pour démontrer la stabilité effective, c’est-à-dire stabilité pour un temps fini mais long, d’un voisinage du point fixe, pour le germe analytique.
We study the Siegel-Schröder center problem on the linearization of analytic germs of diffeomorphisms in several complex variables, in the Gevrey-, category. We introduce a new arithmetical condition of Bruno type on the linear part of the given germ, which ensures the existence of a Gevrey- formal linearization. We use this fact to prove the effective stability, i.e. stability for finite but long time, of neighborhoods of the origin, for the analytic germ.
Keywords: Siegel center problem, Gevrey class, Bruno condition, effective stability, Nekoroshev like estimates
Mot clés : problème du centre de Siegel, classe Gevrey, condition de Bruno, stabilité effective, estimations type Nekoroshev
Carletti, Timoteo 1
@article{AIF_2004__54_4_989_0, author = {Carletti, Timoteo}, title = {Exponentially long time stability for non-linearizable analytic germs of $({\mathbb {C}}^n,0)$.}, journal = {Annales de l'Institut Fourier}, pages = {989--1004}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {54}, number = {4}, year = {2004}, doi = {10.5802/aif.2040}, zbl = {1063.37043}, mrnumber = {2111018}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2040/} }
TY - JOUR AU - Carletti, Timoteo TI - Exponentially long time stability for non-linearizable analytic germs of $({\mathbb {C}}^n,0)$. JO - Annales de l'Institut Fourier PY - 2004 SP - 989 EP - 1004 VL - 54 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2040/ DO - 10.5802/aif.2040 LA - en ID - AIF_2004__54_4_989_0 ER -
%0 Journal Article %A Carletti, Timoteo %T Exponentially long time stability for non-linearizable analytic germs of $({\mathbb {C}}^n,0)$. %J Annales de l'Institut Fourier %D 2004 %P 989-1004 %V 54 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2040/ %R 10.5802/aif.2040 %G en %F AIF_2004__54_4_989_0
Carletti, Timoteo. Exponentially long time stability for non-linearizable analytic germs of $({\mathbb {C}}^n,0)$.. Annales de l'Institut Fourier, Tome 54 (2004) no. 4, pp. 989-1004. doi : 10.5802/aif.2040. https://aif.centre-mersenne.org/articles/10.5802/aif.2040/
[Ba] From Divergent Power Series to Analytic Functions. Theory and Applications of Multisummable Power Series, Lectures Notes in Mathematics, 1582, Springer, 1994 | MR | Zbl
[Br] Analytical form of differential equations, Transactions Moscow Math.Soc, Volume 25 (1971), pp. 131-288 | Zbl
[Br] Analytical form of differential equations, Transactions Moscow Math. Soc., Volume 26 (1972), pp. 199-239 | Zbl
[Ca] The Lagrange inversion formula on non--Archimedean fields. Non--Analytical Form of Differential and Finite Difference Equations, DCDS Séries A, Volume 9 (2003) no. 4, pp. 835-858 | MR | Zbl
[CM] Linearization of analytic and non--analytic germs of diffeomorphisms of , Bull. Soc. Math. de France, Volume 128 (2000), pp. 69-85 | Numdam | MR | Zbl
[GDFGS] Effective stability for a Hamiltonian system near an elliptic equilibrium point with an application to the restricted three body problem, J. of Differential Equations, Volume 77 (1989), pp. 167-198 | MR | Zbl
[Gr] A fixed point theorem for small divisors problems, J. Diff. Eq, Volume 18 (1975), pp. 346-365 | MR | Zbl
[He] Recent Results and Some Open Questions on Siegel's Linearization Theorem of Germs of Complex Analytic Diffeomorphisms of near a Fixed Point, Proc. VIII Int. Conf. Math. Phys. (1986), pp. 138-184
[HW] An introduction to the theory of numbers, Oxford Univ. Press | MR | Zbl
[Ko] Recherches sur les équations fonctionelles, Ann. Sc. E.N.S., Volume 1 (1884) no. supplément, pp. 3-41 | JFM | Numdam | MR
[MMY] The Bruno functions and their regularity properties, Communications in Mathematical Physics, Volume 186 (1997), pp. 265-293 | MR | Zbl
[Ne] An exponential estimate of the time of stability of nearly integrable Hamiltonian systems, Usp. Math. Nauk, Volume 32 (1977), pp. 5-66 | MR | Zbl
[Ne] An exponential estimate of the time of stability of nearly-integrable Hamiltonian systems., Russ. Math. Surv., Volume 32 (1977) no. 6, pp. 1-65 | MR | Zbl
[PM1] Sur les dynamiques holomorphes non linéarisables et une conjecture de V.I. Arnold, Ann. scient. Éc. Norm. Sup. (4), Volume 26 (1993), pp. 565-644 | Numdam | MR | Zbl
[PM2] Sur la dynamique des germes de difféomorphismes de et des difféomorphismes analytiques du cercle (1990) (Thèse Université de Paris Sud)
[Po] Œuvres, tome I, Gauthier--Villars, Paris, 1917
[Ra] Séries divergentes et Théorie asymptotiques, Publ. Journées X--UPS (1991), pp. 1-67
[Si] Iteration of analytic functions, Annals of Mathematics, Volume 43 (1942), pp. 807-812 | MR | Zbl
[St] Infinite Lie groups and the formal aspects of dynamical systems, J. Math. Mech, Volume 10 (1961), pp. 451-474 | MR | Zbl
[Yo] Théorème de Siegel, polynômes quadratiques et nombres de Bruno, Astérisque, Volume 231 (1995), pp. 3-88 | MR
Cité par Sources :