The scattering matrix is defined on a perturbed stratified medium. For a class of perturbations, its main part at fixed energy is a Fourier integral operator on the sphere at infinity. Proving this is facilitated by developing a refined limiting absorption principle. The symbol of the scattering matrix determines the asymptotics of a large class of perturbations.
On définit la matrice de diffusion dans un milieu stratifié perturbé. Pour une classe de perturbations, on démontre que la partie principale est un opérateur intégral de Fourier sur la sphère à l'infini. On développe un principe d'absorption limite raffiné. Dans de nombreux cas, le symbole de la matrice de diffusion détermine le comportement asymptotique des perturbations.
Keywords: stratified media, scattering matrix, inverse problems, limiting absorption principle
Mot clés : milieu stratifié, matrice de diffusion, problèmes d'inversion, principe d'absorption limite
Christiansen, Tanya 1; Joshi, M. S. 2
@article{AIF_2003__53_2_565_0, author = {Christiansen, Tanya and Joshi, M. S.}, title = {Scattering on stratified media: the microlocal properties of the scattering matrix and recovering asymptotics of perturbations}, journal = {Annales de l'Institut Fourier}, pages = {565--624}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {53}, number = {2}, year = {2003}, doi = {10.5802/aif.1953}, zbl = {01940705}, mrnumber = {1990007}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1953/} }
TY - JOUR AU - Christiansen, Tanya AU - Joshi, M. S. TI - Scattering on stratified media: the microlocal properties of the scattering matrix and recovering asymptotics of perturbations JO - Annales de l'Institut Fourier PY - 2003 SP - 565 EP - 624 VL - 53 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1953/ DO - 10.5802/aif.1953 LA - en ID - AIF_2003__53_2_565_0 ER -
%0 Journal Article %A Christiansen, Tanya %A Joshi, M. S. %T Scattering on stratified media: the microlocal properties of the scattering matrix and recovering asymptotics of perturbations %J Annales de l'Institut Fourier %D 2003 %P 565-624 %V 53 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1953/ %R 10.5802/aif.1953 %G en %F AIF_2003__53_2_565_0
Christiansen, Tanya; Joshi, M. S. Scattering on stratified media: the microlocal properties of the scattering matrix and recovering asymptotics of perturbations. Annales de l'Institut Fourier, Volume 53 (2003) no. 2, pp. 565-624. doi : 10.5802/aif.1953. https://aif.centre-mersenne.org/articles/10.5802/aif.1953/
[1] Inverse scattering in a layered medium, C.R. Acad. Sci Paris, Sér. I Math, Volume 329 (1999) no. 10, pp. 927-932 | DOI | MR | Zbl
[2] Inverse scattering in a layered medium, Comm. Partial Differential Equations, Volume 26 (2001) no. 9-10, pp. 1739-1786 | DOI | MR | Zbl
[3] Acoustic waves in perturbed stratified fluids: a spectral theory, Comm. Partial Differential Equations, Volume 14 (1989) no. 4, pp. 479-517 | MR | Zbl
[4] Spectral and scattering theory for wave propagation in perturbed stratified media, J. Math. Anal. Appl., Volume 191 (1995), pp. 137-167 | MR | Zbl
[5] Scattering theory for perturbed stratified media, Journal d'Analyse Mathématique, Volume 76 (1998), pp. 1-44 | DOI | MR | Zbl
[6] Higher order scattering on asymptotically Euclidean manifolds, Canadian J. Math, Volume 52 (2000) no. 5, pp. 897-919 | DOI | MR | Zbl
[7] Recovering asymptotics at infinity of perturbations of stratified media, Équations aux Dérivées Partielles (La Chapelle sur Erdre, 2000), Volume Exp. No. II (2000), pp. 9 pp. | Numdam | Zbl
[8] Scattering and inverse scattering for steplike potentials in the Schrödinger equation, Indiana Univ. Math. J, Volume 34 (1985), pp. 127-180 | DOI | MR | Zbl
[9] Schrödinger operators with application to quantum mechanics and global geometry, Springer-Verlag, Berlin, 1987 | MR | Zbl
[10] Spectral analysis for optical fibres and stratified fluids I: the limiting absorption principle, J. Functional Analysis, Volume 98 (1991), pp. 404-436 | DOI | MR | Zbl
[11] Spectral analysis for optical fibres and stratified fluids II: Absence of eigenvalues, Comm. Partial Differential Equations, Volume 17 (1992) no. 1-2, pp. 69-97 | DOI | MR | Zbl
[12] Inverse scattering on the line, Commun. Pure Appl. Math, Volume 32 (1979), pp. 121-251 | DOI | MR | Zbl
[13] Théorie spectrale de la propagation des ondes acoustiques dans un milieu stratifié perturbé, J. Differential Equations, Volume 62 (1986) no. 3, pp. 357-409 | DOI | MR | Zbl
[14] Commutator algebra and resolvent estimates, Advanced Studies in Pure Mathematics, Volume 23 (1994), pp. 69-82 | MR | Zbl
[15] Inverse scattering at fixed energy for layered media, J. Math. Pures Appl (9), Volume 78 (1999), pp. 27-48 | DOI | MR | Zbl
[16] Groups and Geometric Analysis, Academic Press, Orlando, 1984 | MR | Zbl
[17] Equation de Schrödinger avec champ magnétique et équation de Harper, Schrödinger Operators (Lecture Notes in Phys.), Volume vol. 345, pp. 118-197 | Zbl
[18] The Weyl calculus of pseudo-differential operators, Comm. Pure Appl. Math, Volume 32 (1979), pp. 359-443 | DOI | MR | Zbl
[19] The analysis of linear partial differential operators II, Springer-Verlag, Berlin, 1983 | MR | Zbl
[20] Inverse scattering for wave equations in stratified media, Journal of Differential Equations, Volume 138 (1997), pp. 19-54 | DOI | MR | Zbl
[21] Recovering asymptotics of Coulomb-like potentials from fixed energy scattering data, S.I.A.M. J. Math. Anal., Volume 30 (1999) no. 3, pp. 516-526 | MR | Zbl
[22] Explicitly recovering asymptotics of short range potentials, Comm. Partial Differential Equations, Volume 25 (2000) no. 9 \& 10, pp. 1907-1923 | DOI | MR | Zbl
[23] Recovering asymptotics of short range potentials, Comm. Math. Phys, Volume 193 (1998), pp. 197-208 | DOI | MR | Zbl
[24] Recovering asymptotics of metrics from fixed energy scattering data, Invent. Math, Volume 137 (1999), pp. 127-143 | DOI | MR | Zbl
[25] Determining asymptotics of magnetic potentials from fixed energy scattering data, Asymptotic Analysis, Volume 21 (1999) no. 1, pp. 61-70 | MR | Zbl
[26] Spectral and scattering theory for the Laplacian on asymptotically Euclidean spaces, Spectral and Scattering Theory (1994), pp. 85-130 | Zbl
[27] Scattering metrics and geodesic flow at infinity, Invent. Math., Volume 124 (1996), pp. 389-436 | DOI | MR | Zbl
[28] Asymptotic behavior of generalized eigenfunctions in N-body scattering, J. Funct. Anal, Volume 148 (1997) no. 1, pp. 170-184 | DOI | MR | Zbl
[29] Structure of the resolvent for three-body potentials, Duke Math. J, Volume 90 (1997) no. 2, pp. 379-434 | DOI | MR | Zbl
[30] Propagation of singularities in Euclidean many-body scattering in the presence of bound states, Journées Équations aux Dérivées Partielles (Saint-Jean-de-Monts, 1999), Volume Exp. No. XVI (1999), pp. 20 pp. | Numdam
[31] The limiting absorption principle at thresholds, J. Math. Pures et Appl, Volume 67 (1988), pp. 313-338 | MR | Zbl
[32] Spectral and Scattering Theory for Wave Propagation in Perturbed Stratified Media, Springer-Verlag, New York, 1991 | MR | Zbl
[33] Multidimensional inverse problems in perturbed stratified media, J. Differential Equations, Volume 152 (1999) no. 1, pp. 191-239 | DOI | MR | Zbl
[34] Sound Propagation in Stratified Fluids, Applied Mathematical Sciences, 50, Springer-Verlag, New York, Berlin, Heidelberg | MR | Zbl
Cited by Sources: