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SCATTERING ON STRATIFIED MEDIA:
THE MICROLOCAL PROPERTIES
OF THE SCATTERING MATRIX

AND RECOVERING ASYMPTOTICS
OF PERTURBATIONS

by T. CHRISTIANSEN and M. S. JOSHI

Ann. Inst. Fourier, Grenoble
53, 2 (2003), 565-624

1. Introduction.

In this paper, we study the structure of the scattering matrix on a
perturbed stratified medium. In particular, we show that its main part is a
Fourier integral operator. En route to proving this theorem, we develop an
improved limiting absorption principle for a large class of perturbations,
using techniques from Fourier analysis and microlocal analysis. As an
application of our results, we prove that the asymptotics of a perturbation
can be recovered from the scattering matrix at one energy.

Recall that a stratified medium is a model space in which sound waves

propagate with a variable sound speed that depends on only one coordinate.
Thus, if we write the coordinates on R~ as z = (x, y) with x E and

y E R, we take the wave speed to be of the form co(y) and study the wave
equation

The first author was partially supported by NSF grant 0088922.
Keywords: Stratified media - Scattering matrix - Inverse problems - Limiting absorption
principle.
Math. classification: 35P25 - 81U40 - 35S30.
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where We assume that co is constant for Iyllarge and
that it is piecewise smooth. Set

In general, we do not require that c+ be equal to c-. However, some of our
results are stronger when they are equal.

A perturbed stratified medium is a medium in which the variable
sound speed, c, has the property that c - co is well-behaved at infinity.
The case where the perturbation, c - co, is rapidly decaying has been
studied in many previous papers. In particular, precise asymptotics for

(C 2A - (A -z0)~)~/, when f E were established in [5]. That co and
the scattering matrix at fixed non-zero energy determine an exponentially
decaying perturbation was proved in [20] (co(y) - c± for ::1:y &#x3E; 0),
[15] (co(y) = c± for ~y &#x3E; yM), and [33] (for co a Pekeris profile). In
[1], [2] a similar result was proved under more relaxed requirements on
co. In particular, co was required to exponentially approach constants as
::1:y ---* oo, whilst still requiring that c - co exponentially decay.

Here we study the case where the perturbation, c - co, has an

asymptotic expansion in homogeneous terms at infinity. Under certain
conditions on c and co made more precise in Section 2, we show that the

scattering matrix for c20 is a Fourier integral operator and describe its
singular set. Moreover, we show that the asymptotics of the perturbation
can be recovered from the scattering matrix at fixed energy. We also

establish the leading term of the asymptotics for the limiting absorption
principle.

Our results use techniques developed by Joshi and Sa Barreto, [21],
[22], [23], [24], [25], to study inverse problems in other settings. These
build on work by Melrose [26], and Melrose-Zworski [27], on the structure
of the scattering matrix on asymptotically Euclidean spaces. As in those
inverse results, the fundamental idea here is to compute the symbol of the
scattering matrix by solving transport equations along geodesics on the
sphere at infinity. These equations express the propagation of growth at
infinity.

The analysis here is, however, considerably more involved as the
unperturbed wave speed, co, is not smooth on the compactified space
obtained by adding the sphere at infinity, even when co(y) is a smooth
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function of y. This is because co does not have nice asymptotics in Izl.
Therefore co is well-behaved on the compactified space only after the space
has been blown-up on the equator at infinity. This manifests itself in our
analysis by requiring the geodesic flow at infinity to be refracted and
reflected by the equator. It was also seen in [5] that it makes the asymptotics
in the limiting absorption principle much more complicated. There is a

certain similarity here with many-body scattering, compare, e.g. [29]. There
the scattering problem is complicated by the presence of a potential that
does not decay in certain directions and thus appears as a spike on the
sphere at infinity. This causes refractions and reflections of the geodesic
flows [29]. Indeed, the case where c+ = c- bears much resemblance to the
many-body case. However, when c+ ~ c_ , there are effectively different

energy levels in the two hemispheres, and this introduces new complications
which are not present in the many-body setting, and much of this paper is
dedicated to coping with these complications.

In Section 5 we define the scattering matrix, and its "main part."
When the operator + ",,2) has no eigenvalues as an operator on

co 2dy) for all real x, then the main part of the scattering matrix
is the same as the scattering matrix.

Below we refer to the hypotheses (HI) and (H2). For full details,
see Section 2, but roughly speaking hypothesis (HI) is that c+ = c-, c

and co are smooth, and c - co) x C(I + z ~ ) -2 . Hypothesis (H2) is that

Our first main result is

THEOREM 1.1. Suppose c, co satisfy the general assumptions of
Section 2, and either hypothesis (Hi) or (H2). Then, if c+ = c_, the main
part of the scattering matrix is a zeroth order Fourier integral operator
associated with broken geodesic flow at time 7r. If c- &#x3E; c+, then the

main part of the scattering matrix is a sum of Fourier integral operators
associated with the mapping

and the mapping

and
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Here, when c+ - c-, the geodesic flow is broken at the equator
(w, 0) C This can be compared to the situation for the Laplacian [27],
or a perturbation of the Laplacian to an integral power [6], on a manifold
with asymptotically Euclidean ends, where the scattering matrix is a zeroth
order Fourier integral operator associated to geodesic flow at time 7r on the
the boundary "at infinity." An additional analogy is to 3-body scattering,
where the three-cluster to three-cluster part of the scattering matrix is a
sum of Fourier integral operators associated to broken geodesic flow at time
7r [29]. Other results on the structure of the scattering matrix in n-body
scattering may be found in [30].

Further results on the structure of the scattering matrix are given in

Proposition 5.2.

Our central inverse result is

THEOREM 1.2. - Suppose c and co satisfy the general assumptions
of Section 2, as well as either hypothesis (Hl) or (H2), and n &#x3E; 3. Then,
if c+ - c_, the asymptotic expansion at infinity of c - co is uniquely
determined by co and the transmitted singularities of the main part of the
scattering matrix at fixed non-zero energy. If c+  c-, then the asymptotic
expansion is uniquely determined by co and the reflected singularities of
the main part of the scattering matrix at fixed non-zero energy.

The reflected singularities are those associated to the mapping
(-W, Wn), and, for c+ - c- the transmitted singularities are

those associated to the mapping -We Corollary 8.1 shows that knowl-
edge of c+, c-, A and the singularities of the (absolute) scattering matrix
for any fixed non-zero energy determine the asymptotics of c.

Following the approach to studying the scattering matrix introduced
in [27], in Section 7 we construct a parametrix for the Poisson operator.
This is a key part of our proofs, as it facilitates an understanding of the
singularities of the scattering matrix. We work particularly by adapting the
techniques of [22] which are essentially a concretization of the approach
introduced in [27]. However, the different behaviour of the unperturbed
operator in different regions at infinity means that the analysis is

considerably more involved.

To pass from a parametrix to the actual Poisson operator, we need a

good understanding of the behaviour of (A - (A - iO)2c-2)-1 f at infinity,
when f E (z)-OO L2(IRn) and (1 - cp(y))f E for some 0 E 
In practice, we shall apply this understanding to the error arising from
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the parametrix of the Poisson operator. When c+ - c-, we can obtain
the necessary results by modifying some n-body results of [14] and [28].
However, when c+  c- these results no longer apply, and we develop
new techniques. The essential idea of these techniques is to repeatedly
develop better approximations with improving smoothness properties. Thus
Sections 9 and 10 are devoted to understanding (A - (A - 
allowing us to finish the proof of Theorem 1.1. In particular, we prove the
following limiting absorption principle:

THEOREM 1.3. - Let c and co satisfy the hypotheses of Section 2 and
hypothesis (HI) or (H2). For any X E C°° (~~ -1 ), and f E 
such that (1 - 0(y))f E for some 0 E ure have

where ao e and ui E for all e &#x3E; 0.

Here C°° (~~ -1 ) is the space of smooth functions vanishing in a
neighbourhood of the equator and in a neighbourhood E 

An announcement of some of these results and an outline of part of
the proof can be found in the lecture notes [7].

A note on organization: We need Theorem 1.3 to prove Theorems 1.1
and 1.2. However, since the proof of Theorem 1.3 is rather involved and
uses different techniques from much of the remainder of the paper, we defer
its proof to Section 10. Sections 2 and 3 contain preliminary information,
stating assumptions, fixing notation, and recalling some results of other
papers. In Section 4 we define the Poisson operator, which we use in
Section 5 to define the (absolute) scattering matrix. Also in Section 4
we prove the existence of the Poisson operator and prove Theorem 1.1,
though we use results proved later in the paper. The proof that the Poisson
operator (and thus the scattering matrix) is well defined is deferred to

Section 6. In Section 7 we construct P, an approximation of the Poisson
operator P, proving Proposition 4.2. Theorem 1.2 is proved in Section 8,
using the construction of P and Theorem 1.3. Finally, Sections 9 and 10
contain results about C-2(À - iE)2)-1, culminating in the proof
of Theorem 1.3.

We are grateful to Fritz Gesztesy for helpful conversations and

providing useful references and to Jim Ralston for helpful discussions. We
thank the London Mathematical Society for supporting this collaborative
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research through its small grants scheme. We also thank the referee for his
or her careful reading of an earlier version. The resulting helpful comments
have improved the exposition of this paper.

2. Assumptions and notation.

Throughout, z = E x R.

Both sound speeds c and co satisfy 0  cm x c, cM  oo.

Moreover, co(y) is piecewise smooth and there exists a finite yM so that

co(y) = c± when ::1:y &#x3E; yM, with c- &#x3E; c+. In addition, all derivatives of
co are bounded except at finitely many values of y. This includes the case
where co is piecewise constant.

We require that, away from the hypersurface 01, c - co be
smooth outside of a compact set K, and for simplicity we choose yM so
that K C R n-1 x [-yM, yM]. Moreover, we make requirements on the
behaviour of c - co at infinity. We have, for Y =1= 0,

for any N and any multi-index a, where qj E 0) ~ ) . Here we
use the notation that is the space of smooth functions on X that

have all derivatives bounded. We shall take J to be at least 2 everywhere,
although sometimes we shall require it to be larger. Some of our results
hold under less restrictive hypotheses.

Additionally, we shall often use one of the following hypotheses:

(HI) J = 2, c+ = c-, c and co are smooth.

(H2) J &#x3E; 4.

We warn the reader that the choice of the total space dimension to be

rt rather than n+ 1 is in disagreement with [5] and many other papers on the
subject. We use the notation (w ~ _ (1 + IwI2)1/2. Throughout, c shall stand
for a small positive quantity and C for a positive constant, either of which

may change from line to line. For w E R’, b(w, t) - 
means

for any N and t E K, K a compact set in some manifold.
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3. Spectral theory of co0.

In order to define the (absolute) scattering matrix for we will

need some understanding of the generalized eigenfunctions of co0 and c A ,
and in particular of the space that parameterizes them. Further details can
be found in, for example, [3], [13], [32], [34].

The operators co0 and c20 are formally self-adjoint on L (R , C02 dz)
and c-2dz), respectively, and have unique self-adjoint extensions.

Roughly speaking, the spectral measure of can be given in

terms of two kinds of families of functions. At fixed energy A, the first
is parameterized by ~~ -1. Here

(Compare [32, Section 2.1~; we are modifying somewhat the notation of
[32].) The generalized eigenfunctions are À, w), where for &#x3E; 0,

and 0± satisfies

Moreover, as y - oo,

and as y - -cxJ,

where when 1 /c2 - +  0 we take the square root so that

the right hand side of (8) is exponentially decreasing. The function ø- is

similarly determined: as y - -oo,

and 2013~ oo,

Properly normalized, these generalized eigenfunctions appear in the spec-
tral decomposition of 
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A second type of generalized eigenfunction comes from eigenvalues of

CÕ(11:2 + D 2) on L2 (R, C-2 dy), if there are any. If there are any eigenvalues,
let A~(~)  A 2 (K)  ...  ~~(,~) (~)  C2K2denote the eigenvalues of
cÕ(11:2 + D)). There are only finitely many (perhaps no) eigenvalues for
fixed K and the number is nondecreasing in ~2. Additionally, if K &#x3E; 0 and

Aj &#x3E; 0, then ~ &#x3E; 0; this can be seen via an integration by parts argument
(see, e.g., [5, Sect. 2.2]).

Figure -L The spectrum + Dy ) , for c+  c_ , min co  c+.

Let KJ be the smallest positive number such that CÕ(K2 -I- D~) has
j eigenvalues for all K &#x3E; KJ. Let Kj be the inverse function of Àj (with
the same sign), and let tj -  () - c+(,o)2. The are called

thresholds of Let T(A) be the number of thresholds tj less than A2.
For 0 

where E satisfies

and note that (co0 - 0. The functions are exponentially
decreasing, as can be seen by noting that for &#x3E; YM, they are L~ solutions

At energy level ~2, we can parameterize the generalized eigenfunctions
of co0 by Sn- 1 and T(A) copies of S,-2 . The continuous spectrum
of c2 A is parameterized by the same space as that of C2 A. Therefore,
the (absolute) scattering matrices of and are operators from

L 2(Sn-1) L2 (Sn-2) into itself. In [5] a definition of the scattering
matrix is given in terms of the generalized eigenfunctions. Here, however,
it will be more useful to define the (absolute) scattering matrix using the
Poisson operator, which we shall do in Section 5.
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4. The Poisson operator.

The Poisson operator is defined as an operator

(Again, we have C°° (~~ -1 ) because S’-1 parameterizes part of the contin-
uous spectrum.)

In order to define the Poisson operator, we introduce the notion of an

"outgoing" function in this setting.

DEFINITION 4.1. A function u E (Z)1/2+EL 2(R n) will be called

outgoing if it has a decomposition u = Uo + + U with the following
properties:

for any c &#x3E; 0.

PROPOSITION 4.1. -

then for A E R, ~ ~ 0, there is a unique u such that

and, at infinity,

where v is outgoing as defined in Definition 4.1 and the fj and Kj are as
defined in Section 3.

We will give the proof of the existence of such a u in Section 4.1. We

postpone the proof of the uniqueness to Section 6. This proposition allows
us to define the Poisson operator, P(A).

DEFINITION 4.2.

then P(A)g = u, where u is the u of Proposi-
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Definition 5.1, using Proposition 5.1, defines the (absolute) scattering
matrix via the Poisson operator.

4.1. Existence of the Poisson operator.

Here we prove the existence part of Proposition 4.1, using some results
that we prove later in the paper. The first step is the construction of an

"approximation" of the Poisson operator, which is carried out in Section 7.
Other, simpler, proofs of the existence part of Proposition 4.1 are available,
but this one facilitates the proofs of Theorem 1.1 and 1.2.

For w E sn-l, let 8w (0) be the distribution such that

and similarly for

PROPOSITION 4.2. -

There is a distribution i

such that, for ,

where X(y) E C~(Jae) is 1 for yM + 1 and a, {3 are any multi-indices.
Moreover, distributionally as lzl - oo,

where ho (w, 0) E X Sn- 1). If c+ - c-, ho is the Schwartz kernelc c

of a Fourier integral operator associated to broken geodesicflow at time 7r.
If c- &#x3E; c+, then ho is the Schwartz kernel of the sum of Fourier integral
operators associated with the mapping

and the mapping

and
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For j &#x3E; 0, distributionally as Izl 2013&#x3E; oo,

Here hi E v,(sn-2 X Sn-2) is the Schwartz kernel of a Fourier integral
operator associated with the antipodal map on Sn-2.

We will prove this proposition in Section 7.

We also use

PROPOSITION 4.3. If f E (z~ 3~2+EL2(I~n) for every E &#x3E; 0 and

J &#x3E; 2, then u = (A - (A - iO)2C-2)-1 f is outgoing in the sense of Defini-
tion 4.1.

This proposition will be proved in Section 9.

Proof of the Existence Part of Proposition 4.1. Let

and let For

Then

and u has an expansion at infinity as required in Proposition 4.1. Conse-
quently, Q = P(a), the Poisson operator. D

5. The scattering matrix and the proof of Theorem 1.1.

We will define the (absolute) scattering matrix via the Poisson

operator. In doing so, we assume that the Poisson operator is uniquely
determined; we will prove this in Section 6.

We shall use the following lemma, which will be proved in Section 9.
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LEMMA 5.1. - If f E (z~ -°° L2 (II~n ), then for y E K, K c R compact,

where bj C and vi E x K) for any E &#x3E; 0. Moreover,
for 1  j - T(A) the uj in the definition of outgoing functions can be taken

To define the scattering operator, we need

PROPOSITION 5.1. Let

for K a compact set in ~~ -1. Then, there
exists j such that for 9

where uK I for any c &#x3E; 0.

Let y E Ky, Ky C R compact, and let 9 = Then, there exists

I such that as Ixl -~ oo,

where 1

Proof. We use the same notation to stand for an operator and its
Schwartz kernel. Since

the first part of this proposition follows from Propositions 4.2 and 4.3 and
Theorem 1.3. The second part of the proposition follows again from the

identity (11), Propositions 4.2 and 4.3, and Lemma 5.1. 0
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This information about the Poisson operator allows us to define the

(absolute) scattering matrix A(A).

DEFINITION 5.1. - The (absolute) scattering matrix A(A) is given,
- ’71t B. B ~ - ’71t B. B

where for any compact set K C ~~ -1, is as in Proposition
5. l, and, for as in Proposition 5. l.

We remark that this definition differs slightly from the absolute scat-
tering matrix discussed in [5]. However, as the two differ by a straight-
forward normalization, we shall use this definition here both to emphasize
the similarities with the absolute scattering matrix as defined in [26] and
because it is more convenient for the inverse results.

For completeness, in Appendix A we outline a proof that A(A) can
be extended to a bounded operator on L 2(S,-I) EBf(À) j,2 (~n-2 ) _

For fixed A, A(A) is a matrix (Aij(À)), 0 - i, j  T(A), with the Aij
operators. We shall call Aoo (a) the "main part" of the scattering matrix.
If the operator c5(Dy + ~2) has no eigenvalues on c¡;2dy), the main
part of the scattering matrix is the entire scattering matrix.

We can now prove Theorem 1.1, on the structure of the (absolute)
scattering matrix.

Proof of Theorem 1.1. Again, we use the identity (11). Using the
definition of the scattering matrix and Theorem 1.3, any singularities in the
main part of the scattering matrix must come from Po. Then Proposition
4.2 gives the structure of the singularities of the scattering matrix. D

Finally, we conclude this section with a proposition that describes the
singularities of the other entries in the scattering matrix.

PROPOSITION 5.2. - Let c, co satisfy the general conditions of Section
2 and either hypothesis (Hl) or (H2). Let A(A) = (Aij(À)), 0 , i, j - T(A).
Then, for j &#x3E; 0, is a Fourier integral operator associated with the
antipodal mapping on sn-2, and for i not equal to j, Aij (A) is a smoothing
operator.

Proof. Using the identity (11), Lemma 5.1, and Theorem 1.3, the
singularities of the scattering matrix arise from Then Proposition 4.2
and the definition of the scattering matrix show that the singularities of
the scattering matrix are as claimed. D
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6. Proof of Proposition 4.1 : uniqueness.

In proving Proposition 6.1, we shall use some results of Weder

[31], [32] (See also [11]). We recall some of his results below. Let A -
(-i/4)(z Vz + z). We define the commutator [A - ,B2/c2,A] as a
quadratic form (See the proof of Theorem 5.4 of [32]). By [31, Lemma 3.1]
for all A &#x3E; 0, p &#x3E; -~2/c2 , there is a compact operator K, a compact
interval A containing p, and (3 &#x3E; 0 such that

where En = A 2C-2) is the spectral projector for 0 - A2c-2.
The following proposition and its proof, included for the convenience

of the reader, are essentially adapted from [2, Lemma 4.17].

PROPOSITION 6.1. for every c &#x3E; 0 and (A -
A 2/C-2) U = 0, then u - 0.

Proof. By the results of [31], [32], there is no nontrivial L2 null
space of A - ~2 /c2, so it suffices to show that u E 

and let 4) E be 1 in a neighbourhood of 0. Note that

where

Then

Since
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we have

Here and below CD is a constant that may change from line to line which
depends on D, and also on A and c, but which is independent of 6 and E.

Since, using (13), a similar bound holds for we

obtain from (14)

Since = 0, we have

The bound can be seen, for

example, by using the Helffer-Sjostrand representation of 

However, using (12), the fact that 0 is not an eigenvalue of L, and [9,
Lemma 4.2], we obtain

for some {3l &#x3E; 0, if the support of (D is chosen sufficiently small. Thus we
have, using (15) and (16), and choosing E sufficiently small,

Therefore

Using (16), this shows that for sufficiently small E &#x3E; 0, IluEó II is bounded

independent of 6, and thus u E L~(R~), and u - 0. D

This allows us to show the uniqueness of "outgoing" solutions.

PROPOSITION 6.2. - Given f E there is at most one outgoing
- 1- - - -
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Proof. - Suppose there are two such u. Then by considering the
difference we can reduce to the case where f - 0. Then

where E for all E &#x3E; 0. Using the facts that

f fj (y) f ~ (y)dy = 0 if j 54 k and fj is exponentially decreasing, this implies
that as R - o0

Since uj E (y) -°° (x) 1~2+EL2 (Ilgn) and uo E (y~ 1~2+E (z~EL2 (II~n), we have
uouj E (y~-°° (z) 1~2+ZEL1 (I~n). Therefore, the right hand side of (17),
considered as a function of l~ for large R, is in R’/2+2"L’(R+), so that

Now suppose we know that uo, Uj E for some 13 &#x3E; 0.

Then, using (17) again, since and uoeo, ujej,
e f E (z)/3+t Ll (IRn), we obtain uo, Uj E (z~~~2+EL2 (Il~’~) for any c &#x3E; 0.

By repeating this argument, we obtain that uo, Uj E (z)8 L2(IRn) for any
6 &#x3E; 0, 1  j  T(A). Thus u E (z)6L2(R") for any 6 &#x3E; 0. By the previous
proposition, u - 0. D

Proposition 6.2 gives the uniqueness part of Proposition 4.1.

7. The approximate Poisson operator P.

In this section we prove Proposition 4.2: we construct an approxima-
tion of the Poisson operator. We will use the following lemma.
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LEMMA 7. 1. - For f E the boundary value problem

with boundary conditions

has a unique solution in

Proof. This boundary value problem can be reduced to the form

This has a solution if the null space of the adjoint operator is trivial, and
the solution is unique if the only solution of the homogeneous equation is
the trivial one.

The adjoint operator is the operator

with domain

and

Suppose g is a nontrivial element of the null space of the adjoint operator.
Then

Using the boundary conditions, we find that this is

Thus

A similar calculation shows that the original operator has no nontriv-
ial null space. 0
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In our proof of Proposition 4.2, the existence of an approximation to
the Poisson operator, we shall concentrate on the construction of Po. This
is the most complicated component and also the one of primary interest,
since our inverse results involve the main part of the scattering matrix,

The construction owes a great deal to that of [22], and we refer the
reader to it for full details.

We will show how to construct Po (z, A, w) when Wn &#x3E; 0; the case of

wn  0 is quite similar. The construction involves solving away errors at
infinity. Since the model operator has different behaviour depending
on the region "at infinity" ( y &#x3E; H  yM , or y  -ym) the
techniques involved necessarily depend on the region in which z lies. The
proof is additionally divided into two subcases: &#x3E; 0, and

1 /c2 -  0. Roughly speaking, the second subcase corresponds to
total internal reflection and for these values Po (z, A, 1J) is exponentially
decreasing in y as Y ---* -00. In this subcase we can handle the entire region
y  yM at once. The first subcase corresponds to angles of incidence in
which some of the wave is transmitted, and for these values of 1J, Po is

oscillatory at infinity in all directions.

Finally, there is a third division, involving the construction of Po near
the points where it is singular at infinity (and where the singularities of the
scattering matrix arise). This we defer to Section 7.1.

In an attempt to make the proof more readable, we outline our

construction of

1. y &#x3E; yM, the "upper hemisphere"

a) "incident"

b) "reflected," away from the singular point = ( -~, wn)

a) y  -yM, the "lower hemisphere," away from the singular point
( "transmitted" )

Section 7.1. Construction near singular points.

The numbers correspond to numbering of the paragraphs.
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1. Let c.v = (w, with Wn &#x3E; 0. In our construction of the approxi-
mation to the Poisson operator Po, we begin with the function A, w)
which is defined by (5)-(8). Note that, up to a constant multiple which
depends only on n, A, and c~ , (Do is the Schwartz kernel of the (partial)
Poisson operator, Po,,O, for when cv is in the upper hemisphere of Sn-1.
We use this as our starting point, adding or subtracting terms to cancel
the errors that result when we apply c20 - A 2 to 4bo.

When y &#x3E; we use the techniques of [22] to construct P. Note
that when we apply c20 - A 2 to we obtain an error which, for y &#x3E; yM,

is of the form

where E S;h2g. Here we say that b E if

b - with bk smooth in w, and call it a

polyhomogeneous symbol of order - j . We think of as

an "incident" error and as the "reflected" error.

Ia. Note that if b(z, A,c~) E then for y &#x3E; YM,

Of the terms in parentheses on the right, the first is of the highest order,
E The others are in ,S’~h9 2 .

Suppose our construction to some point has resulted in an error of
the form

similar to that of (20). To remove the term



584

from the error, we look for with

,

Using (21), if we then subtract

from our current approximation, the error term is again of the form (22),
but the coefficient of e’)"*’/’+ in the new error will vanish to one order faster
at infinity. We choose bI,_j+l ( ~ z ~ , À, c~) so that it is smooth at zllzl I = w
in order to keep the right coefficient of e’Alzl/c+ in the distributional

asymptotic expansion. (Here the "I" in the subscript stands for "incident."
Later we shall see "R" for "reflected" and "T" for "transmitted.")

To solve (23), introduce the "polar" coordinates (s, 0), centered at w,
in place of That is, let s be the geodesic distance on the sphere from
w to z/lzl and let 9 be angular coordinates about w. Then equation (23)
can be solved, just as in [22, Section 2], giving

We are abusing notation here, using the same notation for 

A, w) and bI,_~+1 (s, B, ~, c.~), and similarly for dI,-j. Note that as long as
z/lzl is in the upper hemisphere we are away from -1J so the transport
equation has a smooth solution. Moreover, since -(Do(z,A,w) is smooth in

We find iteratively and then use Borel’s lemma to
asymptotically sum obtaining a bj such that

when y &#x3E; yM . Note that the construction of bI has not changed a2.

Ib. We will apply almost the same technique to solve away the error
yM, away from zllzl == (-w, wn). Here we will

use solutions to the transport equation where we choose the initial condition
at y/lzl = 0, and the solutions, in analogy to (24), are of the form
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Here s is the distance on from 0 = to the point and 6 is
the angular coordinate about (ZJ, 2013~~). The value s = sRo corresponds to
On = 0, and CR,j depends only on w and B and will be determined below.
We postpone to Section 7.1 discussion of the form of the parametrix near

= (-LV, the singular point.

IIa. In the lower hemisphere, we use a similar technique if 1/c2 -
&#x3E; 0. Here the error term is of the form

where aT E Again we have solutions like (24) to the transport
equation, although this time s measures the distance on the sphere from

the point We will have an additional term away

from of the form

where is a solution to a transport equation like (23):

Again, s is the distance on S’-’ from and sT,,

corresponds to the distance at = 0. 
Y

The constants (in s) CR,j and CT,j are to be determined. Of course
their values affect subsequent errors and thus subsequent 

IIb. We will use a different technique to construct the solutions when

Iyl  yM . We point out that if co is not smooth, for example, if it is

piecewise constant, we should expect it to be impossible to find a smooth
Poisson operator on R~. We choose our approximations so that Po is Cl
on R’.

The values of CR,j, and CT,j are determined by solutions to boundary
value problems that arise in constructing the parametrix when jyj  
as described below.
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When jyj  the errors are of the form

We look for an approximate solution of the form

The is of lower order and is included to improve the

regularity at y = ~ yM . We will suppress the dependence of 

bR,-j , and bM,-j on A and w to simplify notation. Note that

Therefore, for y ~  yM , to solve away an error of the form

we look for bM,-j such that

The boundary conditions which must satisfy come from matching
with the solutions in the top and bottom hemispheres in order to get a
function which is C 1 "at infinity". They are

where is known (it is determined by integrals over portions of
geodesics of and CRj are to be determined and are
independent of y, and so can be treated as constants in solving the boundary
value problem. They can be eliminated from this set of equations, resulting
in a boundary value problem of the type considered in Lemma 7.1, which
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guarantees us a unique solution to the problem when 1 / c2 
This then determines bR,-3 and bT,-j, since CT,j and are determined

by bM,-j. We remark that if 0, then =

this will be important when studying the
inverse problem.

In order to ensure that our function will be C’ at y - yM and at

y = -YM we will add an additional term whose total contribution will

be of order Let X E c~(Iae), X(t) = 1 for It I  1 and X(t) = 0 for
I t &#x3E; 2. Let

Note that by our choice of b3, ’YU3, and qLj all have leading order
Now, let

For jyj  yM , this determines the approximate solution of the form (26).

III. If  0, then we use a slightly different method for
finding the approximate solution when y x yM . Here, in a manner similar
to that used for lyl  yM above, we solve away the error term by using an
approximation of the form

where
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d-j is the coefficient of in the error term and is exponentially
decreasing in y when y  yM , and bL, -j is square integrable on 
We need in addition a boundary term at y = yM, and this is provided
by the first two equations of (27). An argument like that of Lemma 7.1
shows that there is a unique solution to this problem, and the solution
is exponentially decreasing as y - -oo. As in the previous case, bL,-j is

chosen to improve the regularity at y = yM .

Remark 7.1. - Note that this construction is smooth in w E Sn-1. c

Remark 7.2. - We remark that this construction can be carried out,
with some minor modifications, for sound speeds cl = c+d, where c- co has
an asymptotic expansion of the type (4), and d is supported in lyl  yM,

with

7.1. The approximate Poisson operator near its singularities.

For wn &#x3E; 0, it remains to describe the approximation of the (partial)
Poisson operator near z/lzl I = 0 = (-w, wn) and, if &#x3E; 0, near

The approximation in these

regions contributes to the scattering matrix. As these two are quite similar,
we will concentrate on the first, using the techniques of [22, Section 3]. We
refer to [22] for many of the details.

Let w - (wi, ... , wn) = (w’, wn ) E R~, and rotate the coordinate
system so that w is the north pole. Denote by 1],0 the class of operators
with Schwartz kernel which can, near the south pole, be written as a
Schwartz function plus a term of the form

with a E Cgo’([O,,E) X [0, E) X sn-2). From the results of [22], this class is
asymptotically complete in 7. Moreover, a stationary phase computation
which can be found in [22] shows that away from the south pole this
is equivalent to the class of operators with Schwartz kernel of the form
e-iTWnb, with b a polyhomogeneous symbol in w of order -’Y + (n - 1)/2.
This allows us to match it up with the part of Po (z, À, w) that we have
constructed to this point. We recall below some additional facts about the
operators from [22].

We recall from [22]
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PROPOSITION 7.1. If

then

and

is a smooth symbolic function in ~w~ of order - I - a and its lead coefficient is
f). Here K is the pull-back of the Schwartz kernel of a pseudo-

differential operator of order a - ~y - (n - 2) by the map B H -6. The
principal symbol of K determines and is determined by the lead term of
the symbol, a(t, S, p) of u as S --+ 0 + .

From [22, Propositions 3.1 and 3.2], we have

and

From Lemma 3.2 of [22],

Again from [22]

PROPOSITION 7.3. = then u = 

with f a classical symbol of ord er - a - 1.

We proceed as described in [22, Section 3]. Using the first part of the
construction, we have an approximation of the Poisson operator that blows

up as 0 = approaches
Recalling that wn &#x3E; 0, near 0 (-w, wn ) , we find an approximation
of the "reflected" part of the Poisson operator of the form uR+, where
u G h(~ -1)/2,(n-3)/2’ and R+ : . We will call theu E I an ° W, 

° vve WI ca e

functions of the type of the previous section the "first

ansatz" and functions of the form u7Z+, for u E h -1 ) /2, (n-3) /2 the/c+
"second ansatz" .

We outline briefly how the construction works, following [22, Sec-
tion 3]. The "first" approximation of the "reflected" part of Po is

This corresponds to an element of

. Applying c20 - A2, we obtain by Proposition 7.1, an error
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e 1 with . Its symbol blows up to order n - 2 as
S 1 0 which corresponds to, in the first setup, blow up to order 0 as s T 7r.

The solution to the first transport equation for the first ansatz is a

symbol which blows up to order -1 as s T 7r. We can convert this solution
to a symbol for the second ansatz, with this new symbol blowing up to

order n - 3 as ,5’ . 0. This gives us a symbol of u1 E 
- 

21 
+1 

n-3 3 

R+ . Asorder n - 3 as S 1 0. This gives us a symbol of Ul E 7 ’ R+. As
the new error term for the first ansatz is with d2 E S-3 phg I
we obtain

This technique can be iterated, and the terms (uj) can then be asymp-
n-+1

totically summed. The resulting error is in h+2 , and therefore, using
Proposition 7.3, it is of the form with a E ,~’ph9 +3) /2 (and
smooth in w, z). To remove this error modulo a Schwartz function, we use
the fact that if b E has support in y &#x3E; ym, then

to iteratively solve away the errors as in Proposition 12 of [26].
In the lower hemisphere, a similar argument shows that for 9

the approximation of the Poisson

operator is of the form uR_ , where and

. Putting all of this together (and
v

multiplying by an appropriate constant depending on c, A, and n), we get
an approximation Po to the (partial) Poisson operator with a remainder
term (c20 - À2)PO that is in (z) -00 L2, and is Schwartz after multiplication
by a function 0 E which vanishes for |y|  yM + 1. This completes
the proof of the first part of Proposition 4.2.

7.2. Construction of Pj(À), 1  j  T(A)

For completeness, we briefly outline how to construct an approxi-
mation Pj(A) to Pj(A), T(A). The approximation will have the
properties
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if 0 C 0(y) = 1 when jyj  YM+1, and, distributionally as Izl --~ oo,

Here w E Sn-2

For the construction of Fj, we begin with which

is, up to a constant multiple depending on n and the ( jth partial)
Poisson operator for We have

where d-k is smooth in exponentially decreasing in y, and smooth
in y when jyj &#x3E; yM .

To solve away the error with 1~ = 2, we write

= 0. Since d-2,1 is orthogonal to

fix we can find 9-2 such that

and use to solve away the

error, up to a term vanishing one order faster at infinity. We note that
g_2 is exponentially decreasing in y, since d-2,1 is, and that this term does
not contribute anything to the scattering matrix, since distributionally it
is .

To solve away the error we use the

techniques of [22] in the x variables only. That is, essentially as in our
construction of Po, we solve transport equations along geodesics on s,n-2
beginning at == b. Near _ 2013cj, we must use the second ansatz,
as in Section 7.1 or [22]. Our new approximation of Pj then has the same
properties as before, but with (new) error of order 

The subsequent errors are solved away in exactly the same manner,
resulting in an approximation as claimed. This finishes the proof of Propo-
sition 4.2.
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8. The inverse problem.

In this section we prove our central inverse result, Theorem 1.2. In

proving the results for the inverse problem, we use the techniques of [22],
[23] and much of their language. We recall the arguments from these papers,
noting the adjustments that must be made for the stratified case.

Theorem 1.2 follows from the following theorem, which is somewhat
stronger.

THEOREM 8.1. Suppose n &#x3E;, 3, ci and c2 satisfy the general
requirements of Section 2, and either (Hl) or (H2), for the same co- Let
,Sl (~), ,S’2 (~) be the corresponding scattering matrices for some A 10 1 -
If, for c+ - c-, the transmitted part of the main part of S’1 (A) - S2 (A)
is of order -l, then cl(z) - c2(z) = If for c+  c- the

reflected part of the main part of S, (A) - S’2 (~) is of order -l, then

Suppose that c1 - c2 = W E and that the scattering matrices
associated to ci 0 and have the same transmitted (if c+ - c-) or
reflected (if c+ =1= c_ ) singular parts, to k. Then we shall show that

actually ci - c2 E and thus by induction ci - c2 E 

and U = where I

Note then that the first k - 2 terms in the construction of the Poisson

operator carried out in Section 7 are the same for cl and c2, and the

difference comes in the k - 1st term.

Although many of the underlying techniques are the same, we shall
treat the cases c+ = c- and c+ ~ c- serially. We begin with the case

c+ - c-, and take c,v - with wn &#x3E; 0. In the construction of the
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approximation of the Poisson operator, the transmitted parts (that is, z/lzl I
in the lower hemisphere) of the k - 1st terms differ by

almost as in (2.3) of [22]. Here T+ (A, wn) is the transmission coefficient

determined by equations (6)-(8). We remark that in case c+ = c-, T+=T_.
The transmission coefficient is nonzero for A E A # 0, 0,
0  wn  1. Therefore, as described in [22, Section 4], we can recover
from the difference of the transmitted parts of the scattering matrices

as long as w = (w, wn) with (¡In =1= 0.

If the transmitted parts of the two scattering matrices are the same
to order k - 1, then

Since this is true for all w with Wn =1= 0, we can differentiate with

respect to the starting point twice, use sin 2s + Cos 2s = 1, and find
that Ik-2 = = 0 as well (see [23, Section 5]).
Therefore, if k is even, we reduce eventually to the case with k - 2 = 0 and
if k is odd, to k - 2 = 1. When k is even, differentiating one more time
with respect to the starting point shows that W- k is even; for odd k two
more differentiations show that W- k is odd.

When k is even, we obtain

for each closed geodesic q by joining together two half-geodesics. However,
by [16, Theorem 4.7], for n &#x3E; 3 the x-ray transform on with domain

restricted to smooth even functions is 1-1. Although W- k may have a jump
discontinuity at 1Jn = 0, it is smooth elsewhere. As in the proof of [16,
Corollary 4.19], by first taking a convolution of with a test function

(and then letting the test function approach the identity), we may assume
that W-k is smooth and, applying the theorem, it is thus 0.

If 1~ is odd, we consider ~ W- k , which is even. Since for each geodesic
beginning at 0, sins is a constant multiple of znllzl, we obtain

fy T:r W-k = 0 for each geodesic q and again W-k = 0.i lzl ’ 
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When c+ =1= c_ , we use the reflected singularities in the inverse
problem. Recalling that W E S-lk, we can recover from the reflected
singularities, when Wn &#x3E; 0,

The first integral is along a geodesic originating at w and continuing to

f(010)1 C sn-l; I the second integral is along the reflection of the first

geodesic when it meets On - 0 and the path of integration ends at the
point (-w, wn). The variable s’ is the distance from the point (w, -cvn ) .

It is, however, more convenient to think of the sum (32) as the single
integral 

-IP7r

where

and s is the distance from w. It is fairly straightforward to see by symmetry
that (32) and (33) are the same.

If we can show that (33) is sufficient for recovering

for all w with wn &#x3E; 0, then the analysis used in the case c+ = c- will show
that W_~,+ is 0 if the reflection coefficients agree to order -k.

It suffices that R+(wn, À) is 0 for at most an isolated set of wn with
0  1, for we can obtain the integrals for these isolated values
of wn by continuity. We recall from [34, Chapter 3] that for 0  wn 

&#x3E;’)1 [ = 1. Moreover, because co (y) - c± is compactly
supported for ~y &#x3E; 0, for fixed A E R, R+ (wn, À) can be extended
to a meromorphic function of wn in a neighborhood of 0  wn  1,

except near wn = 1 - c+ /c2 , where it is a meromorphic function of

( 1 - c2 /C2 + c2 wn /c+ ) 1 /2 . Therefore, its zeros are isolated, and we have
shown that it is possible to recover for wn &#x3E; 0.

A very similar analysis works for the lower hemisphere, proving the
theorem. D
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We remark that this proof shows that if cl - c2 E then

the main part of Si (A) - 52 (A) is of order -k + 1.

COROLLARY 8.1. - Let c, co satisfy the general conditions of Section
2, and either (HI) or (H2), and let n &#x3E; 3. Then c+, c_, À, and the main

part of the scattering matrix at nonzero fixed energy determine c modulo
terms vanishing faster than the reciprocal of any polynomial at infinity.

Proof. We need only show that co can be recovered from c+, c-, A,
and knowledge of the scattering matrix at fixed energy. The leading order
singularity of the scattering matrix A(A) determines and is determined by
R~ ( ~, c,~n ) , T± (A, w.), A and c~ , where R~ , T± are defined by equations
(6-10).

Fix A E R B {0}. We can think of equation (6) in the slightly more
general form

a Schrodinger operator with I/C2 ) which is either
compactly supported (if c+ - c-) or "steplike" (if c+  c-). We can
define the reflection and transmission coefficients fi+ (k), T± (k), for (35)
as usual, as in (6-10), and = T~ (1~) = T± (A, w,,), when
k = Moreover, R~, T± are meromorphic functions of k E C if

c+ = c-, and if c+  c-, they are meromorphic functions on Z, the
Riemann surface on which k and (k 2 - A 2 /C2 + 2 /c2 ) 1 2 are single-
valued holomorphic functions. Therefore, knowing R+ (À, wn), 
for 0  wn  determines R+ ( l~ ) , T~(~) on the whole plane
(if c+ = c_ ) or Z (if c+  c_ ) . This in turn determines the eigenvalues of

Dy - À2(1/c6 - 1/C2 ) and the norming constants. These, together with c~
and R+, determine the potential -À2(1/c6 - (e.g. [8], [12]). 0

9. "Outgoing" solutions.

This section and the next one are devoted to some proofs which have
been postponed. These include Proposition 4.3, used in the proof of the
existence of the Poisson operator. The next section culminates in the proof
of Theorem 1.3. These two sections use similar techniques.
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For A E R B 101, E &#x3E; 0, the limit

as an operator on L2(IRn) exists in the norm topology [4], [10]. In this
section and the next, we study further properties of (A - (A - i0)2c-2)-1
when it is applied to a function f E (z)-3~2+~L2(II~n) or to a function
f E (1 - 0(y))f E S(JRn) for some 0 E In particular,
we are interested in the asymptotics at infinity of the resulting function.

For simplicity of exposition, we shall assume A &#x3E; 0 throughout this
section. The results for A  0 can be proved in a similar way.

For the remainder of the paper we shall repeatedly use the fact that
if

then

Additionally,

where g(~, y) = f e-ix.çg(x, y)dx is the Fourier transform in the x variables
only. We shall repeatedly use this notation for the Fourier transform in the
x variables only, and V is given by (36).

We make several remarks about the operator (Dy+t2-(~-2O)2co 2)-1
as an operator from Lcomp (R) to for any E &#x3E; 0. It is smooth for

It  A/c+, t away from /c. Near t = A/c+, (2/c+-t2)1/2(+t2-(-
iO)2CÜ2)-1 is a smooth function of (2/c+ - t2)1/2, and, if c- &#x3E; c+, near

t = A/c- it is a smooth function of (À2/c=- - t2)1/2. When t is sufficiently
large, (Dy -~ t2 - ( ~ - io) 2 co 2 ) -1 is a smooth function of t, bounded on L2(Jae)
by C(/çI2 - C)-I. These properties follow essentially as for one-dimensional
Schrodinger operators.

We shall use the following lemma in the proof of Proposition 4.3.
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Then

for 0 ~ {3  J - 1/2 - E, E &#x3E; 0. Moreover, for any Q = Qk, where

Proof. Throughout the proof E &#x3E; 0 is small, and may change from
line to line.

Since u E Cz&#x3E; 1~2+EL2 (~nl, the decay properties of V ensure that Vu E

We have I . Then

Note that if ~ E Cb (R’- 1), supp(x) n supp(o) = 0, then

Since, for large lxl,

we have, using (39) and (40),

for any multi-index ~y.
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We note that, for any X, E 

Since

for 0  ,c3  J - 1/2 -,E, and using (40), we obtain from (38), (41), and
(42), that

This argument can then be iterated, proving the lemma. 0

The vector fields çj 2013 2013 ~ ~- ~7~~~!~~~~~ span the vector
fields tangent = const = 0. Therefore, we have the following corollary.

COROLLARY 9.1. For fixed t

LEMMA 9.2. - and

for all multi-indices a, {3, then the operator A defined by
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is a continuous map

for any ~y E R.

Proof. We can write

with E 7~"~(R~) the inverse Fourier transform of g on Since

a is a symbol of order 0 in w, this is a pseudodifferential operator acting
on T-’g and the result follows from standard pseudo differential operator
theory. D

LEMMA 9.3. be a symbol of order 0 in w = E

and let h(77) E be supported in 1r¡12 - t2, where t is a

nonzero constant. Then

provided -y &#x3E; 0.

By the previous lemma and the restriction properties of elements of Sobolev

spaces, 
I

The pairing (43) is then well-defined for all such g, and

Although the following fact may be well-known, we are unaware of a
reference and so include it for the convenience of the reader.

LEMMA 9.4. Suppose w E f E (w)-1-sL2(II~"2) for some 6 &#x3E; 0,
Then

for any E &#x3E; 0.
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Proof. - The proof is an adaptation of [19, Lemma 14.2. I]. We will
assume for simplicity that p &#x3E; 0. We have

where (q) = f f (w’)dw’. Clearly, the only issue is the integra-
tion near |n| = p. Using a partition of unity, we can reduce the problem to
considering integrals of the type

where is supported near 1r¡1 = p and ::1:r¡j &#x3E; 0 on the support 

On the support of gl+, we write q = (771, Tl’) and

where

We write

Clearly,

Let w = (WI, w’) . For the other term, we use that

with H the Heaviside function. Since
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and the integrand vanishes on the stationary points of the phase, by
integrating by parts and applying Lemma 9.3, we obtain that this is an
element of (w~ ~ L2 (I~"2 ) for any E &#x3E; 0.

A similar analysis works for the remaining D

We recall Proposition 4.3, the main result of this section.

PROPOSITION 4.3. If f E (z) -3~2+E L2 (II~n ) for every E &#x3E; 0 and

J &#x3E; 2, then u = (A - (À - is outgoing in the sense of Defini-
tion 4.1.

The proof of this proposition includes the proof of Lemma 5.1.

Proofs of Proposition 4.3 and Lemma 5.l. - Throughout the proof,
E stands for any E &#x3E; 0 but may change from line to line.

We use (36) and (37). Note that Yu ~- f (~, y) E I~3~2-E-~ (II~~ -1; I
(y~-~L2(I~y) for any 0  (3  3/2 - E. Choose T E C°°(II~) to be 1 for

lçl ~ ~2 /c+ and supported in a slightly larger neighborhood. In particular,
choose T so that = 0 for j - 1, 2, ..., T(A). We use the fact
that we can write (1 - IV (~)) ((D 2 + l~12 _ (A - i8)2co2)-1 as a sum of
an operator bounded on L (R) and an operator involving projection onto

1  j  T(A). The part corresponding to an operator bounded on
L2 (R) gives, upon integration, an element of L2(JRn). Choose E C°° so
that = 1 and so that Wj is supported very near Then

Here

and

Then Lemma 9.4 shows that Uj has the desired properties.

Suppose for the moment that f E Then we may write
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where E and, using Corollary 9.1,

Then the standard results for the resolvent applied to Schwartz functions
then give us that

where bj E and W2j E (z)EH2(Iaen). This bj is the bj appearing
in Lemma 5.1.

Now we return to the assumption that f E (z) -3~2+EL2 (II~n ) and
consider the integral over the support of W(£) (1~l - ~/c+ + 6).

We may write

Here

and, for ::1:y &#x3E; yM,

with Irn A2 /c£ - [£ ] 2 x 0. These functions are smooth functions ex-

cept near [£ _ ~/c~, where they are smooth functions of (1~12 - A2/C2 )1/2.
The Wronskian ~cp+ ( y’, ~ ~ ~ ~ , cp- ( y’ , ~ ~ ~ ) ~ is nonzero except, perhaps, at ]£ ] =
~/c+, where it behaves like A2 /c$ with at least one of al, a2
nonzero. We suppress the dependence of p+ on A for notational simplicity.
Notice that
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When jyj  C for some constant C, we have that away from

with a norm bounded independent of y, Iyl  C. Near ]£[ = A/c+,
w(ç,y) C for any p  2, again with norm bounded independent
of y, y  C, so using the mapping properties of the Fourier transform

Now we consider what happens for y &#x3E; yM . When y &#x3E; yM , using
(44), for ]£[ x ~/c+ we have

with

A/c+, ~2(~~/) ~ Then taking its inverse

Fourier transform in ~ gives an element &#x3E; ym 1), and similarly
if we take a radial derivative.

If we stay away from [£] = A/c+, hi (£) E Notice that

that is, it vanishes to first order on the critical points of the phase.
Therefore, if we smoothly cut-off to stay in IÇ-I  A/c+ - 6, we may integrate
by parts and, applying Lemma 9.3 (with m = n -1 ), we obtain an element
of 

It remains to consider the integral near ]£ = A /c+ . Using a partition
of unity, we can work on sets where &#x3E; 0 for some i or ~i  0 for some i,

A/c+. We will consider the case ~1 &#x3E; 0 as the other cases follow

similarly, and let W 1+ 6 Coo be a cut-off function with such support

properties. For ]£]  A/c+, introduce the coordinates t = A2 /c$ - l~12,
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We will use ~(t, ~) or sometimes just ~ to denote ~ as a
function of (t, ~) . We must consider

using the notation x = (~2?’’’ ? Here

Then, using the fact that the application of £ +iA /c+ produces a function
that vanishes on the stationary points of the phase, we may integrate by
parts and use Lemma 9.3 (with m = n - 1) and a similar result for the
boundary term to obtain an element of for the contribution

of We have already considered the contribution of when

(I) K A/c+.
What now remains is an integral A/c+, with lçl near A/c+.

First consider the term corresponding to the integral over y’ &#x3E; y in (44).
Since

for A/c+  s  A/c+ + 6, we have

for any p  2. Then taking the inverse Fourier transform in ~ and using
the mapping properties of the Fourier transform we obtain an element of

z&#x3E; H2
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For y &#x3E; ym, the last remaining term to consider is an integral over

]fl] &#x3E; near A/c+, and the term of (44) which involves integrating
over y’  y. Here, we again work on a coordinate patch with ~l &#x3E; 0, and

use the coordinates v We remark that

and

Therefore, we may as before integrate by parts and use Lemma 9.3 to obtain
that

A similar analysis works for y  proving the proposition. 0

10. Proof of Theorem 1.3.

It remains to prove Theorem 1.3. We divide the proof into two cases,
depending on which of the hypotheses (HI) or (H2) holds. The first is the
simpler case.
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10.1. Proof of Theorem 1.3 in case hypothesis (H1 ) holds.

In case hypothesis (Hl ) holds we can use some results from the study
of the n-body problem to prove Theorem 1.3. Our proof uses the notion of
the scattering wave front set, WFsc, introduced by Melrose in [26]. Roughly
speaking, the scattering wave front set provides a microlocal description of
the lack of decay of a function as well as capturing information about its
singularities. We refer the reader to [26, Section 7] for the full definition of
WFsc but give some indications here for the convenience of the reader.

Let A be the operator with Schwartz kernel

where

We will say A E (compare [18] and [26, Section 4]). For a smooth
r eRwe say

WF
Av E for all R &#x3E; 0, and for all A E with 

, ,

vanishing to infinite order on the set

For the definition of R+ (T) see [26, Section 8]. (To put this in the setting
of [26] we are assuming a radial compactification of R~.)

The following proposition implies Theorem 1.3 in one case.

PROPOSITION 10.1. - Suppose c and co satisfy the hypothesis (Hl).

Where aj

Proof. As c+ = c-, we can view this as a perturbation of a simple
n-body problem and use the fact that much is known about asymptotic
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expansions of such resolvents applied to Schwartz functions. First, we note
that

The operator A - A’(co 2 _ is a particularly simple example of a class
of n-body operators widely studied. The operator A - À2(c-2 - c+2), while
not quite an n-body operator since the potential depends on all variables,
is a perturbation that has many of the same properties we desire.

The paper [28], which builds on results of [14], [26], shows that

with bj smooth. The proof is such that the results of [28] hold with

co replaced by a sound speed c of the type considered here. Roughly
speaking, this is because [14] requires that the operator A + VI (where for
us VI = - a2 (co 2 - c+2 ) or Yl = - ~2 (c-2 - c+2 ) ) satisfy a Mourre estimate
and some regularity and decay properties, both of which are satisfied for
either Vi . Vasy remarks already that the results of [28, Section 2], which
are local versions of results of [26], will hold in our case. Then the results
of [28, Section 3] hold for our case, since just as in that paper we can argue
that from the results of [14] and [26] that

and the asymptotic expansion follows from [28, Proposition 2.8] and the
remarks made there. 0

Before giving the proof in the case c+ ~ c-, we give some explanation
as to why the proof of [28] does not apply in this case. The argument of
[28] uses very strongly the fact that, for f E S,

where x E C~ ° (~~ -1 ) .
This is not, however, true in general when c+ ~ c_ . The results of [5,

Theorem 4.1] show that in general for f E 
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when 0  E  yllzl  (1 - c+/c2 )1/2 - c and lzl -~ oo. If 0, then the

scattering wave front set is not contained in R+(A/c+). This means that
the scattering wave front set of x(0 - (A - i0)2/c2)-1 f is in general more
complicated than in the case where c+ = c- (and unknown, to the best of
our knowledge), and the techniques of [26], [28] cannot be immediately
applied. Similar differences can be seen in the resolvent estimates of

[14, Theorem 1.1] for the n-body problem, and [20, Theorem 3.1], for a
particular stratified medium.

Instead, we will take a different approach.

10.2. Preliminaries for the proof of Theorem 1.3
in case hypothesis (H2) holds.

In order to prove Theorem 1.3 when hypothesis (H2) holds, we will
make heavy use of equations (36) and (37). We use the fact that the more
rapidly g decays at infinity, the more we can say about 
using equation (37). To take advantage of this, roughly speaking, we find
approximations w of u = (A - (A - iO)2c-2)-1 f so that (A - À2/cõ)w =
Vu + e, with the error e decaying faster than V u does, and w decaying
faster than u. Then u = w - (A - (A - io)2C 02)-2(f + e) (compare (36)).
The better rate of decay of e improves our knowledge of u.

In actuality, the proof is somewhat more complicated. We study
the behaviour at infinity of E and we introduce

a "microlocal" cut-off w(Dx) so that has the same leading
behaviour as xu at infinity (Lemma 10.1), but is easier to understand.

If w(ç) E we use the notation

Note that = 0 and co(y)] = 0.

Lemma 10.1 shows that, for suitable T, X(l - T(D,,))u E (Z)E-l/2 L2
(Rn), so that xW (Dx )u captures the leading behaviour of xu. Lemmas 10.2-
10.7 are preliminaries. Lemma 10.8 constructs a first approximation of

Then in Proposition 10.2, we use Lemma 10.8 as well as results
from Lemmas 10.2-10.7 to make successive approximations of 

showing that it has an asymptotic expansion with smooth coefficient in the
leading order term.
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The next lemma shows us that, for suitable W and x, XBIl(Dx)u is the
leading order term of xu.

for any E &#x3E; 0.

Proof. We give the proof for X supported in y &#x3E; 0, as the proof
for X with support in y  0 is quite similar. Moreover, for simplicity we
assume that A &#x3E; 0.

The proof closely resembles that of Proposition 4.3. Let W1 E 
be such that suppwi (t) C I &#x3E; supp(l - C A/c+ + 8},
some small 6 &#x3E; 0. In particular, should not include Kj(A),
j - 1,..., T(A). Then, by the same type of arguments as in the proof of
Proposition 4.3, since the eigenfunctions of D’ + are exponentially
decreasing in y, we have

A/c+ and y &#x3E; yM, we use (46):

Here we have so that

Now consider the term corresponding to Away from

lçl = A/c±, E There are no stationary points of the

phase x ~ ~ - when z is restricted to the support of x(zllzl)
and ~ to the support of (1 - w). Therefore, we may integrate by parts
after smoothly cutting off away = ~/c~ . This gives an element of
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We need only examine the integration near
more closely.

we have

where aI, a2 E and l is an integer with l  J - 1. This comes

from using (44) and the subsequent comments about smoothness. Since

again there are no stationary points of the phase x ~ ~ - A2 /c$ - lçl2 with
in the support of X and ~ in the support of 1 - ~, we integrate

by parts. Since, for any ~3 E the Fourier transform in x of

~’3(~~~ -~/c+)(~2/c2 - ~~~2) 1~2 is in for any p &#x3E; 2,
we have that the contribution of the integration of the ai terms over this

region is in (Z)-1/2+E L2(JRn) for any c &#x3E; 0.

Near |E| = A/c+, as in the proof of Proposition 4.3, we divide the
integration into two pieces.  A/c+, to handle the h1 term we
introduce the coordinate t = A2 /c$ - as in the proof of Proposition
4.3 and we can integrate by parts, which results in a boundary term plus
an element of (z~ -1 ~2+E L2 (II~n ) . The boundary term, when added to the
corresponding boundary term for the integral A /c+ , results in an
element of (z) -1 ~2+E L2 (II~n ) .

Now consider A/c+ + 6 &#x3E; ]fl] &#x3E; ~/c+. There are two terms from (44)
to consider. We first consider the integral over y’ &#x3E; y. Note that, as in (48),
for any p  2:

By the mapping properties of the Fourier transform, this contributes an
element of .

For the one remaining term, we change coordinates as in the proof
of Proposition 4.3, using, in the region with ~1 &#x3E; 6 &#x3E; 0, the coordinates

t - ~l~12 - A2/C2 and ~ = (6,... (Other regions can be handled

similarly.)
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We have

Here we are using g, E1 to stand for E(t, E), gi (t, g) for notational simplicity.
There are no stationary points of i(xl t2 + À2 -ltl2 + x . on the

support of so we may integrate by parts twice. The
first boundary term adds to the boundary term from the integral over

A/c+ to give an element of (z~ -1 ~2+E L2 (II~n ), using Lemma 9.3. The
remaining boundary term and the remaining integral both give elements of

(Z) - 1/2+ E L2(R n).
A similar argument gives the same result for D

We use the notation

and will use differential operators of the following type.

DEFINITION 10.1. - We shall say that a differential operator P is in
if P is a differential operator of the form

where bj E Cb (0, oo)), E and is a differential

operator of order in the z/lzl ] variables.

We shall make use of the following lemma. Its proof follows by a
straightforward computation.

and [A, P] E Here stands for a deri vati ve in the
r 9z/lzl I

z/lzl variables.

In order to construct the desired approximation, we shall use the

following lemma. In practice, when we apply this lemma, the first term will
be used in solving away the error, and the subsequent terms will be of lower
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order. In particular, in applications h will vanish faster than g at infinity
and so will + ~t )g.

LEMMA 10.3. - Suppose (A - h, P E and

with the support contained in Sn-1. Then

with Pi+1 E Here Vo stands for the gradient on sn-l.

Proof. - The proof follows from a straightforward computation,
using Lemma 10.2. 0

LEMMA 10.4. - If x 1, X2 E with suppX1 n suppx2 - 0,
~ E and

then for any a E R.

Proof. The crucial observation is that if (x, y) I E suppxl
and E SUPPX2, then &#x3E; ,~3~ (x, y) ~ , &#x3E; I
for some (3 &#x3E; 0.

The Schwartz kernel is given by (2~r) 1-n ~ (x’ - x), where
BÎ1 E Thus, for f E 
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for any m (where the constant depends on m, W, and cx) and thus it follows
D

LEMMA 10.5. If W E and g E ~z) -~ L2 (II~n ), then

W(Dx)g E (z)-Ø L2(IRn). Suppose that Dag, DaPg E for

all P E and for all multi-indices cx. Then E

(z)-Ø L2(IRn) for all P E and all multi-indices a.

Proof. To show that if 9 is in (~)’~L~(R~), then so is we

take the Fourier transform 

where T) denotes the Fourier transform of h in all variables. Then,
since F(g) E and E we have w(Dx)g E

We give an indication of the proof of the remainder of the lemma. Let
k &#x3E; 1 and suppose E for all P E and

for all multi-indices a. For x+ E C°° (~+ 1 ), consider

Let x E C°° (~+ 1 ) be 1 on the support of x. Then, using the first part of
the lemma,

since By the same

reasoning,
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Moreover, by Lemma 10.4,

To finish, note that y) I - I (x’, y) ~ ) is a bounded
function of x, y, and x’ for any rrz. Then, if {3 ~ 0,

Since j , where we allow the

constant C to change from line to line, we have

where for the last inequality we used that x) ( (x, y) -
I  C. A similar argument can be used when Q  0, using

instead in the first step that for ~3  0, C(x - x’~-~((x’, y)) 0 -
A similar argument works for a derivative in the direction, and

the argument can be iterated to get the lemma. 0
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Proof. We give the proof for X supported in I &#x3E; 0; the proof
for X with support in  0 is similar.

We use a cut-off function, W 1 C C§°(R) 1 when

~/c+ and supported in a small neighborhood of that region, so that
C  A/c+l. We write

The main contribution is

Here we may write, for y &#x3E; yM and [E  A/c+,

where . for all k. Putting the
first term of (52) into (51), we obtain

Note that if we apply ’9 + then the integrand vanishes on thed|z|
critical set of the phase function. Since on the support E H’, 1
an integer with l  ~3 - 1/2, we can integrate by parts to see that we have
an element of (z) -1/2+E L2.

For the tangential derivatives (in the z / I z I directions), notice that
if we have a derivative in a direction orthogonal to y, it commutes with

That is, for example,
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By the decay properties of g and the regularity and decay properties of

(1 - §)g, this yields an element of (z)1/2+EL2(Iaen) after multiplication by
x(1 - ~1), if 0 is greater than 3/2.

After applying a derivative of the form g aa - x - £ , as in the radialdx, 3 Oy
case the integrand vanishes on the critical set of the phase function, and so
we can integrate by parts. This argument can be iterated up to l  ,~ -1/2.

The second term of (52) contributes to (51) an element of

.

On the support of
smooth function except near a finite number of points for which A 2
is an eigenvalue of + lçI2). Since the eigenfunctions of this operator
are exponentially decreasing in y and X is supported in yllzl I &#x3E; 6 &#x3E; 0 for

some 6 &#x3E; 0, these eigenfunctions do not contribute to the asymptotics here.

Projecting off the eigenfunctions, we have

with bound Therefore,

where we used the fact that the inverse Fourier transform is an isomorphism
on L2, and the regularity properties of Da(1 - 0(y))g. D

We shall also need the following lemma.

Proof. Observe that
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where W j is a partition of unity qj on suppwj . We may repeat
this integration by parts as many times as desired. Since 

the lemma follows. D

10.3. Proof of Theorem 1.3 in case hypothesis (H2) holds.

The following lemma will provide the first step in the successive

approximations that will allow us to show that the leading order coefficient
is smooth.

Proof. Let xo = x+ + x-, with ~~ supported in ::1:y &#x3E; 0. We will

outline the proof for xo = x+, as the proof for xo = x- is similar, and the
functions can be added to get the general case.

Recall that on the support of x+,

We find Let

with O1 E
ma 10.3

Then, by Lem-

In the same manner, we choose w01 so that
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with and

can be continued, with woj removing the terms in
modulo terms in

PROPOSITION 10.2. - Suppose

supp’F. Moreover, suppose if

then using

and stationary phase, we would be done. However, it is not clear that

V u is in (y) - °° L2 (II~) ) . We shall show that can be

written as a sum of two terms: one vanishing faster than u at infinity,
and another of the form (A - (A - iO)2/cõ)-lgk, where 

~y)-kL2(1~)), where we can make 1~ as large as desired. Then

(55) and stationary phase will finish the proof.
To do this, we follow an iterative procedure. The first step has been

done in Lemma 10.8. We will iteratively construct functions wl which have
the property that (A - A 2/C2)(U _ Wl) improves with increasing l in an
appropriate sense.

Let T2.... E be such that, for all i, 1 on the

support of ~, and satisfies the support requirements
placed on T in the statement of the Proposition. Let xo, Xl, x2, ... E

C°° (~~ -1 ) be such that xox = X and xi+1 xi - Xi, i = 0,1, 2 .... Let wo
be the function constructed in Lemma 10.8 for this ~o and xo . Using the
notation of that lemma, let
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Note that the first three terms are in (z~ -2’-j+5/2+E L2 (~n ) ~ where we use
the support properties of xo and To along with an integration by parts
argument as in the proof of Lemma 10.1 to obtain the result for the first
term. Additionally, the support of the Fourier transform in the x variables
of (1 - is disjoint from the support of W1. Then, using Lemmas
10.6 and 10.7, we have

Since u = wo + (A - (A - which can be seen by Proposition
4.3 and the uniqueness result (Proposition 6.2), this in turn means that

~z~-J+3/2-~EL2(~n) for all P E Diff’, l - 2J - 4, using
Lemma 10.5.

We now iteratively construct Wz for l &#x3E; 1 such that

where and tl is defined by

Then

Moreover, tl - tl + t’,’, where

Additionally, supp Wz (z) C
suppXl (z/|z|).

Supposing that are as above, we show how to construct wl.
Since

we can, just as in Lemma 10.8, find wz -

so that
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with . Let

then by Lemma 10.7. Since

supp by Lemma 10.4,
and

using the support properties of ~l and xl and an integration by parts argu-
ment as in Lemma 10.6. Thus

Note that

Using the properties of tl 1 and tl’, we obtain that
Using

and Lemma 10.5, this in turn means that

for all Thus, for any
and tl can be constructed to have the desired properties.

To prove the proposition, we use (57). Since with

. Then, using equation (55) and stationary phase,
we see that

with when l is sufficiently large.

To finish, then, we only need show that is of order

/zl-(n+l)/2. But we recall that

Therefore
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Proof of Theorem 1.3 in case hypothesis (H1) holds. - Since

the theorem follows by choosing T as in Lemma 10.1, and then applying
Proposition 10.2 and Lemma 10.1. D

Appendix A. The absolute scattering operator A(A)
is bounded on

In this appendix we prove that can be extended to a map

First, we consider what happens for Aco(.X), the absolute scattering matrix
associated to the operator coA, defined as for ~4(A).

Proof. We use P,. (A) to stand for the Poisson operator associated
to Then

For the last equality we have used the definition of Po (A) and Aco(À),
and the uniform asymptotic expansion of Poh that follows from the
results of this paper and [5]. D
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As a consequence of this lemma, we have that Aco (A) can be extended
to a map from to itself, with norm bounded by

and otherwise.

Now, a method similar to the proof of Lemma A.1 shows that

LEMMA A.2. - For

uTe have

Now, because
are bounded, we obtain

This must hold for any using the fact
that Aco (A) is bounded and invertible . Therefore,

, and we obtain

so that A(A) can be extended to a bounded operator on all of 1
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