[Diffusion dans un milieu stratifié : les propriétés microlocales de la matrice de diffusion et l'obtention du comportement asymptotique des perturbations]
On définit la matrice de diffusion dans un milieu stratifié perturbé. Pour une classe de perturbations, on démontre que la partie principale est un opérateur intégral de Fourier sur la sphère à l'infini. On développe un principe d'absorption limite raffiné. Dans de nombreux cas, le symbole de la matrice de diffusion détermine le comportement asymptotique des perturbations.
The scattering matrix is defined on a perturbed stratified medium. For a class of perturbations, its main part at fixed energy is a Fourier integral operator on the sphere at infinity. Proving this is facilitated by developing a refined limiting absorption principle. The symbol of the scattering matrix determines the asymptotics of a large class of perturbations.
Keywords: stratified media, scattering matrix, inverse problems, limiting absorption principle
Mot clés : milieu stratifié, matrice de diffusion, problèmes d'inversion, principe d'absorption limite
Christiansen, Tanya 1 ; Joshi, M. S. 2
@article{AIF_2003__53_2_565_0, author = {Christiansen, Tanya and Joshi, M. S.}, title = {Scattering on stratified media: the microlocal properties of the scattering matrix and recovering asymptotics of perturbations}, journal = {Annales de l'Institut Fourier}, pages = {565--624}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {53}, number = {2}, year = {2003}, doi = {10.5802/aif.1953}, zbl = {01940705}, mrnumber = {1990007}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1953/} }
TY - JOUR AU - Christiansen, Tanya AU - Joshi, M. S. TI - Scattering on stratified media: the microlocal properties of the scattering matrix and recovering asymptotics of perturbations JO - Annales de l'Institut Fourier PY - 2003 SP - 565 EP - 624 VL - 53 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1953/ DO - 10.5802/aif.1953 LA - en ID - AIF_2003__53_2_565_0 ER -
%0 Journal Article %A Christiansen, Tanya %A Joshi, M. S. %T Scattering on stratified media: the microlocal properties of the scattering matrix and recovering asymptotics of perturbations %J Annales de l'Institut Fourier %D 2003 %P 565-624 %V 53 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1953/ %R 10.5802/aif.1953 %G en %F AIF_2003__53_2_565_0
Christiansen, Tanya; Joshi, M. S. Scattering on stratified media: the microlocal properties of the scattering matrix and recovering asymptotics of perturbations. Annales de l'Institut Fourier, Tome 53 (2003) no. 2, pp. 565-624. doi : 10.5802/aif.1953. https://aif.centre-mersenne.org/articles/10.5802/aif.1953/
[1] Inverse scattering in a layered medium, C.R. Acad. Sci Paris, Sér. I Math, Volume 329 (1999) no. 10, pp. 927-932 | DOI | MR | Zbl
[2] Inverse scattering in a layered medium, Comm. Partial Differential Equations, Volume 26 (2001) no. 9-10, pp. 1739-1786 | DOI | MR | Zbl
[3] Acoustic waves in perturbed stratified fluids: a spectral theory, Comm. Partial Differential Equations, Volume 14 (1989) no. 4, pp. 479-517 | MR | Zbl
[4] Spectral and scattering theory for wave propagation in perturbed stratified media, J. Math. Anal. Appl., Volume 191 (1995), pp. 137-167 | MR | Zbl
[5] Scattering theory for perturbed stratified media, Journal d'Analyse Mathématique, Volume 76 (1998), pp. 1-44 | DOI | MR | Zbl
[6] Higher order scattering on asymptotically Euclidean manifolds, Canadian J. Math, Volume 52 (2000) no. 5, pp. 897-919 | DOI | MR | Zbl
[7] Recovering asymptotics at infinity of perturbations of stratified media, Équations aux Dérivées Partielles (La Chapelle sur Erdre, 2000), Volume Exp. No. II (2000), pp. 9 pp. | Numdam | Zbl
[8] Scattering and inverse scattering for steplike potentials in the Schrödinger equation, Indiana Univ. Math. J, Volume 34 (1985), pp. 127-180 | DOI | MR | Zbl
[9] Schrödinger operators with application to quantum mechanics and global geometry, Springer-Verlag, Berlin, 1987 | MR | Zbl
[10] Spectral analysis for optical fibres and stratified fluids I: the limiting absorption principle, J. Functional Analysis, Volume 98 (1991), pp. 404-436 | DOI | MR | Zbl
[11] Spectral analysis for optical fibres and stratified fluids II: Absence of eigenvalues, Comm. Partial Differential Equations, Volume 17 (1992) no. 1-2, pp. 69-97 | DOI | MR | Zbl
[12] Inverse scattering on the line, Commun. Pure Appl. Math, Volume 32 (1979), pp. 121-251 | DOI | MR | Zbl
[13] Théorie spectrale de la propagation des ondes acoustiques dans un milieu stratifié perturbé, J. Differential Equations, Volume 62 (1986) no. 3, pp. 357-409 | DOI | MR | Zbl
[14] Commutator algebra and resolvent estimates, Advanced Studies in Pure Mathematics, Volume 23 (1994), pp. 69-82 | MR | Zbl
[15] Inverse scattering at fixed energy for layered media, J. Math. Pures Appl (9), Volume 78 (1999), pp. 27-48 | DOI | MR | Zbl
[16] Groups and Geometric Analysis, Academic Press, Orlando, 1984 | MR | Zbl
[17] Equation de Schrödinger avec champ magnétique et équation de Harper, Schrödinger Operators (Lecture Notes in Phys.), Volume vol. 345, pp. 118-197 | Zbl
[18] The Weyl calculus of pseudo-differential operators, Comm. Pure Appl. Math, Volume 32 (1979), pp. 359-443 | DOI | MR | Zbl
[19] The analysis of linear partial differential operators II, Springer-Verlag, Berlin, 1983 | MR | Zbl
[20] Inverse scattering for wave equations in stratified media, Journal of Differential Equations, Volume 138 (1997), pp. 19-54 | DOI | MR | Zbl
[21] Recovering asymptotics of Coulomb-like potentials from fixed energy scattering data, S.I.A.M. J. Math. Anal., Volume 30 (1999) no. 3, pp. 516-526 | MR | Zbl
[22] Explicitly recovering asymptotics of short range potentials, Comm. Partial Differential Equations, Volume 25 (2000) no. 9 \& 10, pp. 1907-1923 | DOI | MR | Zbl
[23] Recovering asymptotics of short range potentials, Comm. Math. Phys, Volume 193 (1998), pp. 197-208 | DOI | MR | Zbl
[24] Recovering asymptotics of metrics from fixed energy scattering data, Invent. Math, Volume 137 (1999), pp. 127-143 | DOI | MR | Zbl
[25] Determining asymptotics of magnetic potentials from fixed energy scattering data, Asymptotic Analysis, Volume 21 (1999) no. 1, pp. 61-70 | MR | Zbl
[26] Spectral and scattering theory for the Laplacian on asymptotically Euclidean spaces, Spectral and Scattering Theory (1994), pp. 85-130 | Zbl
[27] Scattering metrics and geodesic flow at infinity, Invent. Math., Volume 124 (1996), pp. 389-436 | DOI | MR | Zbl
[28] Asymptotic behavior of generalized eigenfunctions in N-body scattering, J. Funct. Anal, Volume 148 (1997) no. 1, pp. 170-184 | DOI | MR | Zbl
[29] Structure of the resolvent for three-body potentials, Duke Math. J, Volume 90 (1997) no. 2, pp. 379-434 | DOI | MR | Zbl
[30] Propagation of singularities in Euclidean many-body scattering in the presence of bound states, Journées Équations aux Dérivées Partielles (Saint-Jean-de-Monts, 1999), Volume Exp. No. XVI (1999), pp. 20 pp. | Numdam
[31] The limiting absorption principle at thresholds, J. Math. Pures et Appl, Volume 67 (1988), pp. 313-338 | MR | Zbl
[32] Spectral and Scattering Theory for Wave Propagation in Perturbed Stratified Media, Springer-Verlag, New York, 1991 | MR | Zbl
[33] Multidimensional inverse problems in perturbed stratified media, J. Differential Equations, Volume 152 (1999) no. 1, pp. 191-239 | DOI | MR | Zbl
[34] Sound Propagation in Stratified Fluids, Applied Mathematical Sciences, 50, Springer-Verlag, New York, Berlin, Heidelberg | MR | Zbl
Cité par Sources :