Scattering on stratified media: the microlocal properties of the scattering matrix and recovering asymptotics of perturbations
[Diffusion dans un milieu stratifié : les propriétés microlocales de la matrice de diffusion et l'obtention du comportement asymptotique des perturbations]
Annales de l'Institut Fourier, Tome 53 (2003) no. 2, pp. 565-624.

On définit la matrice de diffusion dans un milieu stratifié perturbé. Pour une classe de perturbations, on démontre que la partie principale est un opérateur intégral de Fourier sur la sphère à l'infini. On développe un principe d'absorption limite raffiné. Dans de nombreux cas, le symbole de la matrice de diffusion détermine le comportement asymptotique des perturbations.

The scattering matrix is defined on a perturbed stratified medium. For a class of perturbations, its main part at fixed energy is a Fourier integral operator on the sphere at infinity. Proving this is facilitated by developing a refined limiting absorption principle. The symbol of the scattering matrix determines the asymptotics of a large class of perturbations.

DOI : 10.5802/aif.1953
Classification : 35P25, 81U40, 35S30
Keywords: stratified media, scattering matrix, inverse problems, limiting absorption principle
Mot clés : milieu stratifié, matrice de diffusion, problèmes d'inversion, principe d'absorption limite

Christiansen, Tanya 1 ; Joshi, M. S. 2

1 University of Missouri, Department of Mathematics, 201 Math Sciences Bldg, Columbia MO 65211 (USA)
2 Royal Bank of Scotland, Group Risk, Waterhouse Square, 138-142 Holborn, London EC1N 2TH (Grande-Bretagne)
@article{AIF_2003__53_2_565_0,
     author = {Christiansen, Tanya and Joshi, M. S.},
     title = {Scattering on stratified media: the microlocal properties of the scattering matrix and recovering asymptotics of perturbations},
     journal = {Annales de l'Institut Fourier},
     pages = {565--624},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {53},
     number = {2},
     year = {2003},
     doi = {10.5802/aif.1953},
     zbl = {01940705},
     mrnumber = {1990007},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1953/}
}
TY  - JOUR
AU  - Christiansen, Tanya
AU  - Joshi, M. S.
TI  - Scattering on stratified media: the microlocal properties of the scattering matrix and recovering asymptotics of perturbations
JO  - Annales de l'Institut Fourier
PY  - 2003
SP  - 565
EP  - 624
VL  - 53
IS  - 2
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.1953/
DO  - 10.5802/aif.1953
LA  - en
ID  - AIF_2003__53_2_565_0
ER  - 
%0 Journal Article
%A Christiansen, Tanya
%A Joshi, M. S.
%T Scattering on stratified media: the microlocal properties of the scattering matrix and recovering asymptotics of perturbations
%J Annales de l'Institut Fourier
%D 2003
%P 565-624
%V 53
%N 2
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.1953/
%R 10.5802/aif.1953
%G en
%F AIF_2003__53_2_565_0
Christiansen, Tanya; Joshi, M. S. Scattering on stratified media: the microlocal properties of the scattering matrix and recovering asymptotics of perturbations. Annales de l'Institut Fourier, Tome 53 (2003) no. 2, pp. 565-624. doi : 10.5802/aif.1953. https://aif.centre-mersenne.org/articles/10.5802/aif.1953/

[1] I. Beltiţă Inverse scattering in a layered medium, C.R. Acad. Sci Paris, Sér. I Math, Volume 329 (1999) no. 10, pp. 927-932 | DOI | MR | Zbl

[2] I. Beltiţă Inverse scattering in a layered medium, Comm. Partial Differential Equations, Volume 26 (2001) no. 9-10, pp. 1739-1786 | DOI | MR | Zbl

[3] M. Ben; - Artzi; Y. Dermenjian; J.-C. Guillot Acoustic waves in perturbed stratified fluids: a spectral theory, Comm. Partial Differential Equations, Volume 14 (1989) no. 4, pp. 479-517 | MR | Zbl

[4] A. Boutet de; Monvel; - Berthier; D. Manda Spectral and scattering theory for wave propagation in perturbed stratified media, J. Math. Anal. Appl., Volume 191 (1995), pp. 137-167 | MR | Zbl

[5] T. Christiansen Scattering theory for perturbed stratified media, Journal d'Analyse Mathématique, Volume 76 (1998), pp. 1-44 | DOI | MR | Zbl

[6] T. Christiansen; M.S. Joshi Higher order scattering on asymptotically Euclidean manifolds, Canadian J. Math, Volume 52 (2000) no. 5, pp. 897-919 | DOI | MR | Zbl

[7] T. Christiansen; M.S. Joshi Recovering asymptotics at infinity of perturbations of stratified media, Équations aux Dérivées Partielles (La Chapelle sur Erdre, 2000), Volume Exp. No. II (2000), pp. 9 pp. | Numdam | Zbl

[8] A. Cohen; T. Kappeler Scattering and inverse scattering for steplike potentials in the Schrödinger equation, Indiana Univ. Math. J, Volume 34 (1985), pp. 127-180 | DOI | MR | Zbl

[9] H.L. Cycon; R.G. Froese; W. Kirsch; B. Simon Schrödinger operators with application to quantum mechanics and global geometry, Springer-Verlag, Berlin, 1987 | MR | Zbl

[10] S. DeBièvre; D.W. Pravica Spectral analysis for optical fibres and stratified fluids I: the limiting absorption principle, J. Functional Analysis, Volume 98 (1991), pp. 404-436 | DOI | MR | Zbl

[11] S. DeBièvre; D.W. Pravica Spectral analysis for optical fibres and stratified fluids II: Absence of eigenvalues, Comm. Partial Differential Equations, Volume 17 (1992) no. 1-2, pp. 69-97 | DOI | MR | Zbl

[12] P. Deift; E. Trubowitz Inverse scattering on the line, Commun. Pure Appl. Math, Volume 32 (1979), pp. 121-251 | DOI | MR | Zbl

[13] Y. Dermenjian; J.-C. Guillot Théorie spectrale de la propagation des ondes acoustiques dans un milieu stratifié perturbé, J. Differential Equations, Volume 62 (1986) no. 3, pp. 357-409 | DOI | MR | Zbl

[14] C. Gérard; H. Isozaki; E. Skibsted Commutator algebra and resolvent estimates, Advanced Studies in Pure Mathematics, Volume 23 (1994), pp. 69-82 | MR | Zbl

[15] J.-C. Guillot; J. Ralston Inverse scattering at fixed energy for layered media, J. Math. Pures Appl (9), Volume 78 (1999), pp. 27-48 | DOI | MR | Zbl

[16] S. Helgason Groups and Geometric Analysis, Academic Press, Orlando, 1984 | MR | Zbl

[17] B. Helffer; J. Sjöstrand; H. Holden and A. Jensen, eds. Equation de Schrödinger avec champ magnétique et équation de Harper, Schrödinger Operators (Lecture Notes in Phys.), Volume vol. 345, pp. 118-197 | Zbl

[18] L. Hörmander The Weyl calculus of pseudo-differential operators, Comm. Pure Appl. Math, Volume 32 (1979), pp. 359-443 | DOI | MR | Zbl

[19] L. Hörmander The analysis of linear partial differential operators II, Springer-Verlag, Berlin, 1983 | MR | Zbl

[20] H. Isozaki Inverse scattering for wave equations in stratified media, Journal of Differential Equations, Volume 138 (1997), pp. 19-54 | DOI | MR | Zbl

[21] M.S. Joshi Recovering asymptotics of Coulomb-like potentials from fixed energy scattering data, S.I.A.M. J. Math. Anal., Volume 30 (1999) no. 3, pp. 516-526 | MR | Zbl

[22] M.S. Joshi Explicitly recovering asymptotics of short range potentials, Comm. Partial Differential Equations, Volume 25 (2000) no. 9 \& 10, pp. 1907-1923 | DOI | MR | Zbl

[23] M.S. Joshi; A. Sá; Barreto Recovering asymptotics of short range potentials, Comm. Math. Phys, Volume 193 (1998), pp. 197-208 | DOI | MR | Zbl

[24] M.S. Joshi; A. Sá; Barreto Recovering asymptotics of metrics from fixed energy scattering data, Invent. Math, Volume 137 (1999), pp. 127-143 | DOI | MR | Zbl

[25] M.S. Joshi; A. Sá; Barreto Determining asymptotics of magnetic potentials from fixed energy scattering data, Asymptotic Analysis, Volume 21 (1999) no. 1, pp. 61-70 | MR | Zbl

[26] R.B. Melrose; M. Ikawa, ed Spectral and scattering theory for the Laplacian on asymptotically Euclidean spaces, Spectral and Scattering Theory (1994), pp. 85-130 | Zbl

[27] R.B. Melrose; M. Zworski Scattering metrics and geodesic flow at infinity, Invent. Math., Volume 124 (1996), pp. 389-436 | DOI | MR | Zbl

[28] A. Vasy Asymptotic behavior of generalized eigenfunctions in N-body scattering, J. Funct. Anal, Volume 148 (1997) no. 1, pp. 170-184 | DOI | MR | Zbl

[29] A. Vasy Structure of the resolvent for three-body potentials, Duke Math. J, Volume 90 (1997) no. 2, pp. 379-434 | DOI | MR | Zbl

[30] A. Vasy Propagation of singularities in Euclidean many-body scattering in the presence of bound states, Journées Équations aux Dérivées Partielles (Saint-Jean-de-Monts, 1999), Volume Exp. No. XVI (1999), pp. 20 pp. | Numdam

[31] R. Weder The limiting absorption principle at thresholds, J. Math. Pures et Appl, Volume 67 (1988), pp. 313-338 | MR | Zbl

[32] R. Weder Spectral and Scattering Theory for Wave Propagation in Perturbed Stratified Media, Springer-Verlag, New York, 1991 | MR | Zbl

[33] R. Weder Multidimensional inverse problems in perturbed stratified media, J. Differential Equations, Volume 152 (1999) no. 1, pp. 191-239 | DOI | MR | Zbl

[34] C. Wilcox Sound Propagation in Stratified Fluids, Applied Mathematical Sciences, 50, Springer-Verlag, New York, Berlin, Heidelberg | MR | Zbl

Cité par Sources :