Pour les fonctions dont les coefficients de Fourier satisfont à , la capacité est évaluée pour l’ensemble où la fonction maximale satisfait à .
@article{AIF_1965__15_1_59_0,
author = {Carleson, Lennart},
title = {Maximal functions and capacities},
journal = {Annales de l'Institut Fourier},
pages = {59--64},
year = {1965},
publisher = {Institut Fourier},
address = {Grenoble},
volume = {15},
number = {1},
doi = {10.5802/aif.195},
zbl = {0139.28701},
mrnumber = {32 #2602},
language = {en},
url = {https://aif.centre-mersenne.org/articles/10.5802/aif.195/}
}
TY - JOUR AU - Carleson, Lennart TI - Maximal functions and capacities JO - Annales de l'Institut Fourier PY - 1965 SP - 59 EP - 64 VL - 15 IS - 1 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.195/ DO - 10.5802/aif.195 LA - en ID - AIF_1965__15_1_59_0 ER -
Carleson, Lennart. Maximal functions and capacities. Annales de l'Institut Fourier, Volume 15 (1965) no. 1, pp. 59-64. doi: 10.5802/aif.195
[1] , Ensembles exceptionnels, Acta Math., 72 (1940), 1-13. | Zbl | MR | JFM
[2] , On two classes of trigonometrical series, Thesis, Uppsala (1947).
[3] , Interpolations by bounded analytic functions and the Corona problem, Ann. of Math., 76 (1962) 547-559. | Zbl | MR
[4] , Convex capacity and Fourier series, Dokl. Akad. Nauk, 110 (1956). | Zbl | MR
Cited by Sources:



