LENNART CARLESON
Maximal functions and capacities

Annales de l'institut Fourier, tome 15,n°1 (1965), p. 59-64
<http://www.numdam.org/item?id=AIF_1965__15_1_59_0>

© Annales de I’institut Fourier, 1965, tous droits réservés.

L’acces aux archives de la revue « Annales de I’institut Fourier »
(http://annalif.ujf-grenoble.fr/) implique ’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

NuMDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=AIF_1965__15_1_59_0
http://annalif.ujf-grenoble.fr/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Ann. Inst. Fourier, Grenoble
15, 1 (1965), 59-64.

MAXIMAL FUNCTIONS AND CAPACITIES
by Lennart CARLESON

1. Let f(x) be periodic with period 27 and assume f(x) € L?(— =, n),
some p > 1. The maximal function f*(x) associated with f(x) was
introduced by Hardy and Littlewood through the definition
x+

(L.1) /709 = sup j f(u) du

The inequalities

4

(1.2) J |/ *(x)P dx < APJ lfx)|Pdx, p>1,

-T

and

(1.3) m{x|f*(x) = 1} < %J | f(x)] dx

are basic in the theory of differentiation. (1.2) can alternatively be
given as a theorem on harmonic functions. Assume f > 0 and let u(z)
be harmonic in |z] < 1 with boundary values f(6). Then clearly

(1.4) const. f*(0) < sup u(re'®) < const. £*(6).

The inequality (1.2) follows if we can characterize those non-negative
measures u for which

(1.5) J] u(z)? du(z) < Apjn f(x)? dx.
1zl <1 -n

It is sufficient to consider p = 2 and the complete solution was
given in [3]: a necessary and sufficient condition on g, is

U(S) < const. s
for every set S:1 — s < |z| < 1, |arg(z) — o] < s.

The corresponding linear problem, ie., to describe those u for
which

(1.6) [Jutz) dutz)
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is bounded for feL? is clearly much simpler and the solution is
that

2
(1.7) (6) = f f w—zlrdﬂ(z)

belongs to L4

Although this result is in principle sufficient for differentiation
purposes, it is of little help since no simple geometric characteriza-
tion of u seems to be available.

We shall now consider the corresponding problem for the class
of functions f(x),

(X) Z c emx

such that
I£1& = Zleal* A < o0.

Here {4,} is a positive sequence such that

i COS nx
0 'ln

is a convex function € L!. The following theorem is quite easy to
prove.

THEOREM 1.—If A, =(n+ 1)! 7% 0 < a < 1, (1.6) is bounded if
and only if

E,(4) ”d“(“)d“(b) w, O<a<l,

b
Eo(u) =” log 1

The bound of (1.6) is < const. \/—E—a .

If we specialize du to have the form da(0) placed at a point on the
radius from O to ¢ we find using (1.4) and observing that E(u)
essentially increases if we push the masses out to |z| = 1

(18) (J7*0 do) < A,[f [fL(0)

where I, is the energy of o with respect to the kernel |x|™% resp.

K(x) ~

- l du(a) du(b) < oo, o = 0.
- ab

log ﬁ This inequality implies easily the existence of derivatives
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and boundary-values except on sets of capacities zero. This is a
result by Beurling [1] and Broman [2].

The proof of Theorem 1 in the case a = 0 is particularly simple.
Consider first the case when y has its support strictly inside |z| < 1.
Consider the harmonic function

ug(z) = [ log |1 — z{| du(0)

v

and let (u, v) denote scalar product in the space of harmonic functions

with finite Dirichletintegral and with u(0) = 0. Then by Poisson’s
formula

du,

, Ug) = ——ds =2 du(z).
(u, ug) Ll=lu an 98 njfu(z) u(z)

Hence

2n||[ wdp| < uol - ul
with equality if u = u,, and the linear functional (1.6) has norm
(2m) "%, /Eq(n). The case of a general u follows immediately.

The restriction u(0) =0, ie., | fdx =0, is clearly inessential.
Let us also observe that we here (as well as in Section 2) also may
restrict ourselves to f > 0 since |f(x)| has a smaller norm than f
(see (2.1)).

In the case 0 < a < 1 we write

1 —|a|?

1
J‘u(a) du(a) = j f)do 5 jm du(a) = J S(0)g(6) do.
The function v(r, 6) harmonic in |z| < 1 with boundary values g(6) is
’ 1 1 — |a|?*r? .
(1.9) olr,0) = 5= Jle—o_"”a—r]z du(a) = T br'"lei.
We wish to prove
(1.10) [[o(r, 0021 = r)~=drd6 < oo,

since this inequality is equivalent to X|b,*(n| + 1)*™! < .
Inserting (1.9) in (1.10) we see that (1.10) holds if E (1) < co.

2. It is clearly possible to use the same method for general kernels
K(x) and corresponding weights 4,. However the formulas become
so involved that they cannot be used to deduce inequalities of the
form (1.8). Of particular interest is the case

A, = (log(n + 2))%, 0<a< 0.
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For functions f with corresponding | f|x finite and 0 < a < 1,
nothing is known on convergence of Fourier series and no better
result on existence of derivatives than Lebesgue’s theorem. The
kernel K, that is associated with this sequence is
1
|x|(log 1/]x)***”
The following theorem holds

K (x) x—0.

THEOREM 2.— There is a constant B, such that

CKG[{fo*(x) > )}] < % Iflz., O0<a< oo

By standard methods this implies that the primitive function of f
has a derivative except on a set of K -capacity zero. It is interesting
to compare this result with what is known on convergence of Fourier
series. It has been proved by Temko [4], that if |f|k,,, < o then
the Fourier series converges except on a set of K,-capacity zero,
while we here get a stronger result on existence of boundary values.

In the proof we use the equivalent norm

VORI _ ( ﬁ)l_“
(2.1) ‘U_n o=y dx dy, o(t) = |t|{log ]

and the following potential theoretic lemma:

LEMMA. — If ¢ is an interval of length d on (—m, ©), denote by To
an interval of length 3d and having the same midpoint as . We assume
that {a,} are disjoint and denote by E = Ua, and E' = UTo,. Then
there is a constant Q only depending on K such that

Ck(E') < QC(E)
provided K(x) = O(K(2x)), x — 0.

In an outline, the proof of theorem 2 proceeds as follows. Let
o,, denote the 2" disjoint intervals of length 2n.27" on (—m, n).
Let A be given and denote by M,(f) the mean value of f over the
interval a. We choose intervals ¢4, 7,, ..., such that

(2.2) Mo (f) 2 4

by first choosing those o,; that satisfy (2.2), then o,, disjoint from
those chosen before, etc. It follpws easily from the lemma that it
is sufficient to prove C{uo,} < const. | f]|*. 172
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Let 7, be intervals such that Tt, = ¢,. We want to construct
fi(x) such that || f;|| < const. || f|| and fi(x) = Mo (f), xe1,. We
first modify f on each o, according to the following rule where we
have normalized o, to (—1, 1):

f(2x), _%<x<%
f(—x_%), *%<x<_%
Jx) = f(x), —“1<x< -2

analogously on (3, 1).

Outside wa, we define f,(x) = f(x). From (2.1) it follows that
I 2]k < const.|| f].

Let 40 be the length of the shortest of the intervals ,. We have the
following picture:

6\’
. \
2] oy Ty B B,

. — R ——————————— R — A —|

where we construct «; and f; until their length < 4. a; and f; have
lengths = 37! (length o,). We define

Mtv(fZ) = Ma'v(f)’ XET,;
M.(f2), xew;

Mm(fz)’ xepi;
linear between the intervals.

filx) =

We do the same construction on each o, and each complementary
interval. A computation in (2.1) shows that || f;|| < const. || f5|.

To complete the proof, let u be a distribution of unit mass on
E” = urt,. Then

A< J Sa(x) du(x) < ” fz”x . IK(/‘)% < const. ”f“x e(wp.
-

The lemma now yields theorem 2.



64 LENNART CARLESON

BIBLIOGRAPHY

[1] A. BEURLING, Ensembles exceptionnels, Acta Math., 72 (1940), 1-13.

[2] A. BroMAN, On two classes of trigonometrical series, Thesis, Uppsala (1947).

[3] L. CarLESON, Interpolations by bounded analytic functions and the Corona
problem, Ann. of Math., 76 (1962) 547-559.

[4] K. V. Temko, Convex capacity and Fourier series, Dokl. Akad. Nauk, 110 (1956).

Lennart CARLESON,
Department of Mathematics,
Uppsala University,
Sysslomansgatan 8,
Uppsala (Suéde).



