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MAXIMAL FUNCTIONS AND CAPACITIES
by Lennart CARLESON

1. Let/(x) be periodic with period In and assume/(x) e L^ — TT, 71),
some p ^ 1. The maximal function /*(x) associated with f(x) was
introduced by Hardy and Littlewood through the definition

(1.1) /*(x)=sup^-f f(u)du.

The inequalities

(1.2) f l/*^ dx ^ Ap f l/Ml^ rix, p > 1,
J -7t J -71

and

(1.3) m{x|/*(x) ^ 2} < ̂  [ |/(x)|dx
v —it

are basic in the theory of differentiation. (1.2) can alternatively be
given as a theorem on harmonic functions. Assume/ > 0 and let u(z)
be harmonic in |z| < 1 with boundary values/(0). Then clearly

(1.4) const./*(0) ^ sup u(re10) ̂  const./*(0).
r

The inequality (1.2) follows if we can characterize those non-negative
measures ^ for which

(1.5) ff u(z)^(z)^Aj f{xYdx.
JJ |z |<l J -n

It is sufficient to consider p = 2 and the complete solution was
given in [3]: a necessary and sufficient condition on ^ is

/4S) ^ const. 5
for every set S: 1 — s < |z| < 1, jarg (z) — a| < s.

The corresponding linear problem, i.e., to describe those p, for
which

(1.6) JJ^)W
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is bounded for feLP is clearly much simpler and the solution is
that

(1.7) <p(0)=ff__^,^(^

belongs to IA
Although this result is in principle sufficient for differentiation

purposes, it is of little help since no simple geometric characteriza-
tion of /z seems to be available.

We shall now consider the corresponding problem for the class
of functions f{x\

00~ z
— 00

f(x} ~ ^ c^,

such that
||/||̂  = S |ĉ | < oo.

Here {A,,} is a positive sequence such that

KM-i608^
0 ^n

is a convex function e L1. The following theorem is quite easy to
prove.

THEOREM l.—J/ ̂  = (n + I)1"", 0 ^ a < 1, (1.6) fs fcoun^d iy
and only if

- , , f f d^{a)d^(b)
^ = h _ |̂« < 00' 0 < a < 1,

rr^wfc)-JJ-T^^
Eo(^) ==JJ log j-̂  d/x(a) d^b) < oo, a = 0.

rA^ fcound of {1.6) is < const. ^/E^.
If we specialize d^ to have the form da{6) placed at a point on the

radius from 0 to e19 we find using (1.4) and observing that E^(/i)
essentially increases if we push the masses out to |z| = 1

(1.8) (J/^^^AJI/II^^)

where I,, is the energy of a with respect to the kernel Ix)"", resp.

log,—,. This inequality implies easily the existence of derivatives
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and boundary-values except on sets of capacities zero. This is a
result by Beurling [1] and Broman [2].

The proof of Theorem 1 in the case a == 0 is particularly simple.
Consider first the case when /i has its support strictly inside |z| < 1.
Consider the harmonic function

Uo(z)=JJlog|l-zC|^(0
and let (u, v} denote scalar product in the space of harmonic functions
with finite Dirichletintegral and with u(0) = 0. Then by Poisson's
formula

(u,uo)= f u^ds=2nf!u{z}d^
J \z\ = 1 J J

Hence
27t|JJ«^ ^Iluoll.NI

with equality if u = UQ, and the linear functional (1.6) has norm
(27i)~\/Eo(^). The case of a general ^ follows immediately.

The restriction u(0) = 0, i.e., J/dx = 0, is clearly inessential.
Let us also observe that we here (as well as in Section 2) also may
restrict ourselves to / > 0 since |/(x)| has a smaller norm than /
(see (2.1)).

In the case 0 < a < 1 we write

Ju(a)^(a) =J/(0)^^J|^^^(a) =\mg{6)d0.

The function v(r, 0} harmonic in |z| < 1 with boundary Values g(0) is

(1.9) r(r, 0) = ̂  J |̂ 212^ w = E bnr^ein6'

We wish to prove
(1.10) JJr(r, ̂ (l - r)-" dr dQ < oo,

since this inequality is equivalent to ElfcJ2^] + I)""1 < oo.
Inserting (1.9) in (1.10) we see that (1.10) holds if E^i) < oo.

2. It is clearly possible to use the same method for general kernels
K(x) and corresponding weights ^. However the formulas become
so involved that they cannot be used to deduce inequalities of the
form (1.8). Of particular interest is the case

^ = (log(n + 2))", 0 < a < oo.
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For functions / with corresponding | | /HK finite and 0 < a < 1,
nothing is known on convergence of Fourier series and no better
result on existence of derivatives than Lebesgue's theorem. The
kernel K^ that is associated with this sequence is

w ~ Moog^i)-' ^°-
The following theorem holds

THEOREM 2. — There is a constant B^ such that

cJw*M ̂  ^}1 < ̂ tll/IIL 0 < a < a).
L J A

By standard methods this implies that the primitive function of/
has a derivative except on a set of K^-capacity zero. It is interesting
to compare this result with what is known on convergence of Fourier
series. It has been proved by Temko [4], that if | | / | |Ka+i < °° ^en
the Fourier series converges except on a set of K^-capacity zero,
while we here get a stronger result on existence of boundary values.

In the proof we use the equivalent norm

.-> jjr.^f- ^w
and the following potential theoretic lemma:

LEMMA. — I f a is an interval of length d on ( — T T , TC), denote by Ta
an interval of length 3d and having the same midpoint as a. We assume
that {o\,} are disjoint and denote by E = uo\, and E' == uTo\,. Then
there is a constant Q only depending on K such that

CK(E') ^ QCK(E)
provided K{x) = 0(K(2x)), x -^ 0.

In an outline, the proof of theorem 2 proceeds as follows. Let
a^ denote the 2" disjoint intervals of length 27r .2~" on (-7r,7r).
Let /I be given and denote by M^(/) the mean value of/over the
interval a. We choose intervals o-i, a^, . . . , such that

(2.2) Ma,(/)^2

by first choosing those o\,i that satisfy (2.2), then a^ disjoint from
those chosen before, etc. It follows easily from the lemma that it
is sufficient to prove C{u(3\} ̂  const. ||/||2 . ̂ ~2 .
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Let Ty be intervals such that Tty = o\,. We want to construct
/i(x) such that ||/i|| ^ const. ||/| and f^(x) = M(7,(f\ xey We
first modify / on each a^ according to the following rule where we
have normalized o\ to ( — 1,1):

f /(2x), i ^ -. ^ i
2 < X < j

/(-^-t),
fi(x) ==

~ ^ < X <-i

-1 < x < -if(x\

analogously on (^, 1).

Outside uo\ we define /^(x) = f{x). From (2.1) it follows that
\\/2\\K^ const.||/||K.

Let 46 be the length of the shortest of the intervals o\. We have the
following picture:

^v

Pi P2

where we construct o^ and ^ until their length < 6. o^ and ^ have
lengths = 3~l~l (length o\). We define^v).

( MJ/^-M^/), xer , ;
Ma.(/2). x e a,;

M^), ^ e ^ ;
linear between the intervals.

fi{x)

We do the same construction on each o-y and each complementary
interval. A computation in (2.1) shows that ||/J| < const. | f^\.

To complete the proof, let p, be a distribution of unit mass on
E" = UTv. Then

A < f f,(x) d^(x) ̂  || f,\\ K . IK(^ ^ const. || /|| K . W^
JE"

The lemma now yields theorem 2.
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