Pour les fonctions dont les coefficients de Fourier satisfont à , la capacité est évaluée pour l’ensemble où la fonction maximale satisfait à .
@article{AIF_1965__15_1_59_0, author = {Carleson, Lennart}, title = {Maximal functions and capacities}, journal = {Annales de l'Institut Fourier}, pages = {59--64}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {15}, number = {1}, year = {1965}, doi = {10.5802/aif.195}, zbl = {0139.28701}, mrnumber = {32 #2602}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.195/} }
TY - JOUR AU - Carleson, Lennart TI - Maximal functions and capacities JO - Annales de l'Institut Fourier PY - 1965 SP - 59 EP - 64 VL - 15 IS - 1 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.195/ DO - 10.5802/aif.195 LA - en ID - AIF_1965__15_1_59_0 ER -
Carleson, Lennart. Maximal functions and capacities. Annales de l'Institut Fourier, Tome 15 (1965) no. 1, pp. 59-64. doi : 10.5802/aif.195. https://aif.centre-mersenne.org/articles/10.5802/aif.195/
[1] Ensembles exceptionnels, Acta Math., 72 (1940), 1-13. | JFM | MR | Zbl
,[2] On two classes of trigonometrical series, Thesis, Uppsala (1947).
,[3] Interpolations by bounded analytic functions and the Corona problem, Ann. of Math., 76 (1962) 547-559. | MR | Zbl
,[4] Convex capacity and Fourier series, Dokl. Akad. Nauk, 110 (1956). | MR | Zbl
,Cité par Sources :