[Variétés de modules de morphismes décomposables de faisceaux et quotients par des groupes non-réductifs]
Nous étendons les méthodes utilisées en géométrie invariante à l’étude de l’action de sur étant des faisceaux cohérents décomposables, dont les groupes d’automorphismes ne sont pas nécessairement réductifs. Étant donné une linéarisation de cette action, un homomorphisme est dit stable si son orbite relativement au radical unipotent de est contenue dans le lieu stable relativement à l’action du sous-groupe réductif naturel de . Nous donnons des conditions numériques effectives portant sur la linéarisation pour que l’ouvert correspondant des points semi-stables admette un bon quotient au sens de la géométrie invariante, qui soit projectif, et pour que ce quotient restreint à l’ouvert des homomorphismes stables soit un quotient géométrique.
We extend the methods of geometric invariant theory to actions of non–reductive groups in the case of homomorphisms between decomposable sheaves whose automorphism groups are non–reductive. Given a linearization of the natural action of the group on Hom(E,F), a homomorphism is called stable if its orbit with respect to the unipotent radical is contained in the stable locus with respect to the natural reductive subgroup of the automorphism group. We encounter effective numerical conditions for a linearization such that the corresponding open set of semi- stable homomorphisms admits a good and projective quotient in the sense of geometric invariant theory, and that this quotient is in addition a geometric quotient on the set of stable homomorphisms.
Keywords: algebraic quotients, good quotients, non-reductive groups, moduli spaces
Mot clés : quotients algébriques, bons quotients, groupes non-réductifs, variétés de modules
Drézet, Jean-Marc 1 ; Trautmann, Günther 2
@article{AIF_2003__53_1_107_0, author = {Dr\'ezet, Jean-Marc and Trautmann, G\"unther}, title = {Moduli spaces of decomposable morphisms of sheaves and quotients by non-reductive groups}, journal = {Annales de l'Institut Fourier}, pages = {107--192}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {53}, number = {1}, year = {2003}, doi = {10.5802/aif.1941}, zbl = {1034.14023}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1941/} }
TY - JOUR AU - Drézet, Jean-Marc AU - Trautmann, Günther TI - Moduli spaces of decomposable morphisms of sheaves and quotients by non-reductive groups JO - Annales de l'Institut Fourier PY - 2003 SP - 107 EP - 192 VL - 53 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1941/ DO - 10.5802/aif.1941 LA - en ID - AIF_2003__53_1_107_0 ER -
%0 Journal Article %A Drézet, Jean-Marc %A Trautmann, Günther %T Moduli spaces of decomposable morphisms of sheaves and quotients by non-reductive groups %J Annales de l'Institut Fourier %D 2003 %P 107-192 %V 53 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1941/ %R 10.5802/aif.1941 %G en %F AIF_2003__53_1_107_0
Drézet, Jean-Marc; Trautmann, Günther. Moduli spaces of decomposable morphisms of sheaves and quotients by non-reductive groups. Annales de l'Institut Fourier, Tome 53 (2003) no. 1, pp. 107-192. doi : 10.5802/aif.1941. https://aif.centre-mersenne.org/articles/10.5802/aif.1941/
[1] A recipe for finding open subsets of vector spaces with a good quotient, Colloq. Math., Volume 77 (1998) no. 1, pp. 97-114 | MR | Zbl
[2] Open subsets of projective space with a good quotient by an action of a reductive group, Transf. Groups, Volume 1 (1996) no. 3, pp. 153-185 | DOI | MR | Zbl
[3] Quelques aspects de la théorie des invariants, Gazette, Soc. Math. de France, 1989 | MR | Zbl
[4] Sur le quotient d'une variété algébrique par un groupe algébrique, Advances in Math., Suppl. Studies, Volume vol. 7A (1981), pp. 327-344 | MR | Zbl
[5] Variation of Geometric Invariant Theory Quotients (e-print, alg-geom/9402008)
[6] Fibrés exceptionnels et variétés de modules de faisceaux semi-stables sur , J. reine angew. Math., Volume 380 (1987), pp. 14-58 | DOI | MR | Zbl
[7] Cohomologie des variétés de modules de hauteur nulle, Math. Ann., Volume 281 (1988), pp. 43-85 | DOI | MR | Zbl
[8] Variétés de modules extrémales de faisceaux semi-stables sur , Math. Ann., Volume 290 (1991), pp. 727-770 | DOI | MR | Zbl
[9] Exceptional bundles and moduli spaces of stables sheaves on , Vector Bundles in Algebraic Geometry, Proceedings Durham 1993 (London Math. Soc. Lecture Note), Volume 208 (1995) | Zbl
[10] Quotients algébriques par des groupes non réductifs et variétés de modules de complexes, Intern. J. Math., Volume 9 (1998) no. 7, pp. 769-819 | DOI | MR | Zbl
[11] Variétés de modules alternatives, Ann. Inst. Fourier, Volume 49 (1999) no. 1, pp. 57-139 | DOI | Numdam | MR | Zbl
[12] Espaces abstraits de morphismes et mutations, J. reine angew. Math., Volume 518 (2000), pp. 41-93 | DOI | MR | Zbl
[13] Fibrés stables et fibrés exceptionnels sur , Ann. École Norm. Sup., Volume 18 (1985), pp. 193-244 | Numdam | MR | Zbl
[14] On the variety of nets of quadrics defining twisted cubic curves, Space Curves (Lect. Notes in Math.), Volume 1266 (1987) | Zbl
[15] On the Chow ring of a geometric quotient, Ann. of Math., Volume 130 (1989), pp. 159-187 | DOI | MR | Zbl
[16] Geometric invariant theory for general algebraic groups, Comp. Math., Volume 55 (1985), pp. 63-87 | Numdam | MR | Zbl
[17] Invariant theory for linear algebraic groups II, Comp. Math., Volume 68 (1983), pp. 23-29 | Numdam | MR | Zbl
[18] On the moduli space of semi-stable sheaves on with Hilbert polynomial (2000) (Diplomarbeit, Kaiserslautern)
[19] Geometric quotients of unipotent group actions, Proc. Lond. Math. Soc., Volume 67 (1993), pp. 75-105 | DOI | MR | Zbl
[20] Semi-stable sheaves on a two-dimensional quadric and Kronecker modules, Math. Izvestiya AMS Transl., Volume 40 (1993), pp. 33-66 | MR | Zbl
[21] Moduli of representations of finite dimensional algebras, Quart. J. Math. Oxford, Volume 45 (1994), pp. 515-530 | DOI | MR | Zbl
[22] Quotient spaces modulo algebraic groups, Ann. of Math., Volume 145 (1997), pp. 33-79 | DOI | MR | Zbl
[23] Systèmes cohérents et structures de niveau, Astérisque, 214, Soc. Math. France, 1993 | MR | Zbl
[24] Faisceaux semi-stables de dimension 1 sur le plan projectif, Rev. Roumaine Math. Pures Appl., Volume 318 (1993), pp. 635-678 | MR | Zbl
[25] Some moduli spaces for rank 2 stable reflexive sheaves on , Trans. Amer. Math. Soc., Volume 299 (1987), pp. 699-717 | MR | Zbl
[26] The moduli scheme over , Math. Z., Volume 216 (1994), pp. 283-315 | DOI | MR | Zbl
[27] Geometric invariant theory, Ergeb. Math. Grenzgeb., Springer, Berlin-Heidelberg-New York, 1982 | MR | Zbl
[28] On the 14th problem of Hilbert, Proc. Intern. Cong. Math. 1958, Edinburgh (1960), pp. 459-462 | Zbl
[29] Introduction to moduli problems and orbit spaces, TIFR Lect. Notes in Math., 51, Springer, Berlin-Heidelberg-New York, 1978 | MR | Zbl
[30] Moduli extremer reflexiver Garben auf , J. reine angew. Math., Volume 338 (1983), pp. 183-194 | DOI | MR | Zbl
[31] Invariant theory, Algebraic Geometry, IV: Linear algebraic groups, invariant theory (Encycl. Math. Sci.), Volume vol. 55 (1994), pp. 123-278 | Zbl
[32] What is a flip (1992) (Preprint)
[33] General representations of quivers, Proc. Lond. Math. Soc., Volume 65 (1992), pp. 46-64 | DOI | MR | Zbl
[34] Mumford's conjecture for and applications, Proc. Int. Colloq. on Algebraic Geometry, Volume vol. 347 (1968) | Zbl
[35] Geometric invariant theory and flips, J. Amer. Math. Soc., Volume 9 (1996), pp. 691-723 | DOI | MR | Zbl
[36] Rational curves on the space of determinantal nets of conics (1998) (e-print, math.AG/9802037)
Cité par Sources :