Moduli spaces of decomposable morphisms of sheaves and quotients by non-reductive groups
Annales de l'Institut Fourier, Volume 53 (2003) no. 1, pp. 107-192.

We extend the methods of geometric invariant theory to actions of non–reductive groups in the case of homomorphisms between decomposable sheaves whose automorphism groups are non–reductive. Given a linearization of the natural action of the group Aut (E)× Aut (F) on Hom(E,F), a homomorphism is called stable if its orbit with respect to the unipotent radical is contained in the stable locus with respect to the natural reductive subgroup of the automorphism group. We encounter effective numerical conditions for a linearization such that the corresponding open set of semi- stable homomorphisms admits a good and projective quotient in the sense of geometric invariant theory, and that this quotient is in addition a geometric quotient on the set of stable homomorphisms.

Nous étendons les méthodes utilisées en géométrie invariante à l’étude de l’action de G= Aut (E)× Aut (F) sur Hom (E,F),E,F étant des faisceaux cohérents décomposables, dont les groupes d’automorphismes ne sont pas nécessairement réductifs. Étant donné une linéarisation de cette action, un homomorphisme est dit stable si son orbite relativement au radical unipotent de G est contenue dans le lieu stable relativement à l’action du sous-groupe réductif naturel de G. Nous donnons des conditions numériques effectives portant sur la linéarisation pour que l’ouvert correspondant des points semi-stables admette un bon quotient au sens de la géométrie invariante, qui soit projectif, et pour que ce quotient restreint à l’ouvert des homomorphismes stables soit un quotient géométrique.

DOI: 10.5802/aif.1941
Classification: 14L30, 14D20
Keywords: algebraic quotients, good quotients, non-reductive groups, moduli spaces
Mot clés : quotients algébriques, bons quotients, groupes non-réductifs, variétés de modules
Drézet, Jean-Marc 1; Trautmann, Günther 2

1 Institut de Mathématiques, UMR 7586 du CNRS, Aile 45-55, 5ème étage, 2 place Jussieu, 75251 Paris Cedex 05 (France)
2 Universität Kaiserslautern, Fachbereich Mathematik, Erwin-Schrödinger Strasse, 67663 Kaiserslautern (Allemagne)
@article{AIF_2003__53_1_107_0,
     author = {Dr\'ezet, Jean-Marc and Trautmann, G\"unther},
     title = {Moduli spaces of decomposable morphisms of sheaves and quotients by non-reductive groups},
     journal = {Annales de l'Institut Fourier},
     pages = {107--192},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {53},
     number = {1},
     year = {2003},
     doi = {10.5802/aif.1941},
     zbl = {1034.14023},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1941/}
}
TY  - JOUR
AU  - Drézet, Jean-Marc
AU  - Trautmann, Günther
TI  - Moduli spaces of decomposable morphisms of sheaves and quotients by non-reductive groups
JO  - Annales de l'Institut Fourier
PY  - 2003
SP  - 107
EP  - 192
VL  - 53
IS  - 1
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.1941/
DO  - 10.5802/aif.1941
LA  - en
ID  - AIF_2003__53_1_107_0
ER  - 
%0 Journal Article
%A Drézet, Jean-Marc
%A Trautmann, Günther
%T Moduli spaces of decomposable morphisms of sheaves and quotients by non-reductive groups
%J Annales de l'Institut Fourier
%D 2003
%P 107-192
%V 53
%N 1
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.1941/
%R 10.5802/aif.1941
%G en
%F AIF_2003__53_1_107_0
Drézet, Jean-Marc; Trautmann, Günther. Moduli spaces of decomposable morphisms of sheaves and quotients by non-reductive groups. Annales de l'Institut Fourier, Volume 53 (2003) no. 1, pp. 107-192. doi : 10.5802/aif.1941. https://aif.centre-mersenne.org/articles/10.5802/aif.1941/

[1] A. Bialynicki-Birula; J. Świȩcika A recipe for finding open subsets of vector spaces with a good quotient, Colloq. Math., Volume 77 (1998) no. 1, pp. 97-114 | MR | Zbl

[2] A. Bialynicki-Birula; J. Świȩcika Open subsets of projective space with a good quotient by an action of a reductive group, Transf. Groups, Volume 1 (1996) no. 3, pp. 153-185 | DOI | MR | Zbl

[3] J. Dixmier Quelques aspects de la théorie des invariants, Gazette, Soc. Math. de France, 1989 | MR | Zbl

[4] J. Dixmier; M. Raynaud Sur le quotient d'une variété algébrique par un groupe algébrique, Advances in Math., Suppl. Studies, Volume vol. 7A (1981), pp. 327-344 | MR | Zbl

[5] H. Dolgachev; Yi Hu Variation of Geometric Invariant Theory Quotients (e-print, alg-geom/9402008)

[6] J.-M. Drézet Fibrés exceptionnels et variétés de modules de faisceaux semi-stables sur 2 (), J. reine angew. Math., Volume 380 (1987), pp. 14-58 | DOI | MR | Zbl

[7] J.-M. Drézet Cohomologie des variétés de modules de hauteur nulle, Math. Ann., Volume 281 (1988), pp. 43-85 | DOI | MR | Zbl

[8] J.-M. Drézet Variétés de modules extrémales de faisceaux semi-stables sur 2 (), Math. Ann., Volume 290 (1991), pp. 727-770 | DOI | MR | Zbl

[9] J.-M. Drézet Exceptional bundles and moduli spaces of stables sheaves on n , Vector Bundles in Algebraic Geometry, Proceedings Durham 1993 (London Math. Soc. Lecture Note), Volume 208 (1995) | Zbl

[10] J.-M. Drézet Quotients algébriques par des groupes non réductifs et variétés de modules de complexes, Intern. J. Math., Volume 9 (1998) no. 7, pp. 769-819 | DOI | MR | Zbl

[11] J.-M. Drézet Variétés de modules alternatives, Ann. Inst. Fourier, Volume 49 (1999) no. 1, pp. 57-139 | DOI | Numdam | MR | Zbl

[12] J.-M. Drézet Espaces abstraits de morphismes et mutations, J. reine angew. Math., Volume 518 (2000), pp. 41-93 | DOI | MR | Zbl

[13] J.-M. Drézet; J. Le Potier Fibrés stables et fibrés exceptionnels sur 2 (), Ann. École Norm. Sup., Volume 18 (1985), pp. 193-244 | Numdam | MR | Zbl

[14] G. Ellingsrud; R. Piene; S.A. Str{\O}mme On the variety of nets of quadrics defining twisted cubic curves, Space Curves (Lect. Notes in Math.), Volume 1266 (1987) | Zbl

[15] G. Ellingsrud; S.A. Str{\O}mme On the Chow ring of a geometric quotient, Ann. of Math., Volume 130 (1989), pp. 159-187 | DOI | MR | Zbl

[16] A. Fauntleroy Geometric invariant theory for general algebraic groups, Comp. Math., Volume 55 (1985), pp. 63-87 | Numdam | MR | Zbl

[17] A. Fauntleroy Invariant theory for linear algebraic groups II, Comp. Math., Volume 68 (1983), pp. 23-29 | Numdam | MR | Zbl

[18] H.G. Freiermuth On the moduli space M p ( 3 ) of semi-stable sheaves on 3 with Hilbert polynomial P(m)=3m+1 (2000) (Diplomarbeit, Kaiserslautern)

[19] G.-M. Greuel; G. Pfister Geometric quotients of unipotent group actions, Proc. Lond. Math. Soc., Volume 67 (1993), pp. 75-105 | DOI | MR | Zbl

[20] B.V. Karpov Semi-stable sheaves on a two-dimensional quadric and Kronecker modules, Math. Izvestiya AMS Transl., Volume 40 (1993), pp. 33-66 | MR | Zbl

[21] A. King Moduli of representations of finite dimensional algebras, Quart. J. Math. Oxford, Volume 45 (1994), pp. 515-530 | DOI | MR | Zbl

[22] J. KollÁr Quotient spaces modulo algebraic groups, Ann. of Math., Volume 145 (1997), pp. 33-79 | DOI | MR | Zbl

[23] J. Le Potier Systèmes cohérents et structures de niveau, Astérisque, 214, Soc. Math. France, 1993 | MR | Zbl

[24] J. Le Potier Faisceaux semi-stables de dimension 1 sur le plan projectif, Rev. Roumaine Math. Pures Appl., Volume 318 (1993), pp. 635-678 | MR | Zbl

[25] R.M. Miró-Roig Some moduli spaces for rank 2 stable reflexive sheaves on 3 , Trans. Amer. Math. Soc., Volume 299 (1987), pp. 699-717 | MR | Zbl

[26] R.M. Miró-Roig; G. Trautmann The moduli scheme M(0,2,4) over 3 , Math. Z., Volume 216 (1994), pp. 283-315 | DOI | MR | Zbl

[27] D. Mumford; J. Fogarty Geometric invariant theory, Ergeb. Math. Grenzgeb., Springer, Berlin-Heidelberg-New York, 1982 | MR | Zbl

[28] M. Nagata On the 14th problem of Hilbert, Proc. Intern. Cong. Math. 1958, Edinburgh (1960), pp. 459-462 | Zbl

[29] P.E. Newstead Introduction to moduli problems and orbit spaces, TIFR Lect. Notes in Math., 51, Springer, Berlin-Heidelberg-New York, 1978 | MR | Zbl

[30] C. Okonek Moduli extremer reflexiver Garben auf n , J. reine angew. Math., Volume 338 (1983), pp. 183-194 | DOI | MR | Zbl

[31] V.L. Popov; E.G. Vinberg Invariant theory, Algebraic Geometry, IV: Linear algebraic groups, invariant theory (Encycl. Math. Sci.), Volume vol. 55 (1994), pp. 123-278 | Zbl

[32] M. Reid What is a flip (1992) (Preprint)

[33] A. Schofield General representations of quivers, Proc. Lond. Math. Soc., Volume 65 (1992), pp. 46-64 | DOI | MR | Zbl

[34] C.S. Seshadri Mumford's conjecture for GL (2) and applications, Proc. Int. Colloq. on Algebraic Geometry, Volume vol. 347 (1968) | Zbl

[35] M. Thaddeus Geometric invariant theory and flips, J. Amer. Math. Soc., Volume 9 (1996), pp. 691-723 | DOI | MR | Zbl

[36] E.N. Tj{\O}tta Rational curves on the space of determinantal nets of conics (1998) (e-print, math.AG/9802037)

Cited by Sources: