We prove that the locus of Jacobians is an irreducible component of the small Schottky locus in any characteristic different from . The proof follows an idea of B. van Geemen in characteristic and relies on a detailed analysis at the boundary of the - expansion of the Schottky-Jung relations. We obtain algebraically such relations using Mumford’s theory of -adic theta functions. We show how the uniformization theory of semiabelian schemes, as developed by D. Mumford, C.-L. Chai and G. Faltings, allows the study of higher dimensional -expansions simplifying the argument.
Nous prouvons que le lieu des jacobiens est une composante irréductible du petit lieu de Schottky en caractéristique différente de . La preuve repose sur une méthode introduite par B. van Geemen en caractéristique et se base sur une analyse détaillée au bord du -développement des relations de Schottky-Jung. Nous obtenons ces relations d’une façon algébrique en utilisant les fonctions thêta -adiques définies par Mumford. La théorie d’uniformisation des schémas semi-abéliens, due à D. Mumford, C.-L. Chai et G. Faltings, permet d’ étudier des -développements en dimension supérieure en donnant une preuve plus simple.
Keywords: Schottky-Jung relations, theta functions, Mumford's uniformization
Mot clés : relations de Schottky-Jung, fonctions theta, uniformisation à la Mumford
Andreatta, Fabrizio 1
@article{AIF_2003__53_1_69_0, author = {Andreatta, Fabrizio}, title = {The small {Schottky-Jung} locus in positive characteristics different from two}, journal = {Annales de l'Institut Fourier}, pages = {69--106}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {53}, number = {1}, year = {2003}, doi = {10.5802/aif.1940}, zbl = {1067.14025}, mrnumber = {1973069}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1940/} }
TY - JOUR AU - Andreatta, Fabrizio TI - The small Schottky-Jung locus in positive characteristics different from two JO - Annales de l'Institut Fourier PY - 2003 SP - 69 EP - 106 VL - 53 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1940/ DO - 10.5802/aif.1940 LA - en ID - AIF_2003__53_1_69_0 ER -
%0 Journal Article %A Andreatta, Fabrizio %T The small Schottky-Jung locus in positive characteristics different from two %J Annales de l'Institut Fourier %D 2003 %P 69-106 %V 53 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1940/ %R 10.5802/aif.1940 %G en %F AIF_2003__53_1_69_0
Andreatta, Fabrizio. The small Schottky-Jung locus in positive characteristics different from two. Annales de l'Institut Fourier, Volume 53 (2003) no. 1, pp. 69-106. doi : 10.5802/aif.1940. https://aif.centre-mersenne.org/articles/10.5802/aif.1940/
[An] On Mumford's uniformization and Néron models of Jacobians of semistable curves over complete bases, Moduli of Abelian Varieties (Progress in Math), Volume 195 (2001), pp. 11-127 | Zbl
[Be] Prym varieties and the Schottky problem, Invent. Math, Volume 41 (1977), pp. 149-196 | DOI | MR | Zbl
[BLR] Néron Models, Ergebnisse der Mathematik und ihrer Grenzebiete, 3 Folge, Band 21, Springer-Verlag, 1990 | MR | Zbl
[Br] Fonctions thêta et théorème du cube, Lecture Notes in Math, 980, Springer-Verlag, 1983 | MR | Zbl
[Ch] Compactification of Siegel moduli schemes, London Math. Soc. Lecture Notes Series, Volume 107 (1985) | MR | Zbl
[Do1] Big Schottky, Invent. Math, Volume 89 (1987), pp. 569-599 | DOI | MR | Zbl
[Do2] The Schottky problem, Theory of Moduli (Lecture Notes in Math), Volume 1337 (1988), pp. 84-137 | Zbl
[FC] Degeneration of abelian varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3 Folge, Band 22, Springer-Verlag, 1990 | MR | Zbl
[MB] Pinceaux de variétés abéliennes, Astérisque, Volume 129 (1985) | MR | Zbl
[Mu1] On the equations defining abelian varieties 1, 2, 3, Invent. Math, Volume 1 ; 3 (1966 ; 1967), p. 287-358 ; 71--135 ; 215--244 | DOI | MR | Zbl
[Mu2] The structure of the moduli spaces of curves and abelian varieties, Actes Congrès Intern. Math., Volume Tome 1 (1970), pp. 457-465 | Zbl
[Mu3] An analytic construction of degenerating abelian varieties over complete rings, Comp. Math, Volume 24 (1972), pp. 239-272 | Numdam | MR | Zbl
[Mu4] Prym varieties 1, Contributions to analysis (1974), pp. 325-350 | Zbl
[vG] Siegel modular forms vanishing on the moduli space of curves, Invent. Math, Volume 78 (1984), pp. 329-349 | DOI | MR | Zbl
[vS] The Schottky-Jung theorem for Mumford curves, Ann. Inst. Fourier (Grenoble), Volume 39 (1989) no. 1, pp. 1-15 | DOI | Numdam | MR | Zbl
[We1] The surface in Jacobi varieties and second order theta functions, Acta Math, Volume 157 (1986), pp. 1-22 | DOI | MR | Zbl
[We2] Polarized abelian varieties and the heat equations, Comp. Math, Volume 49 (1983), pp. 173-194 | Numdam | MR | Zbl
Cited by Sources: