The cohomology of Nakajima’s varieties is known to carry a natural Weyl group action. Here this fact is established using the method of intersection cohomology, in analogy with the definition of Springer’s representations.
Il est connu que le groupe de Weyl opère naturellement sur la cohomologie d’une variété de Nakajima. Ici ce fait est établi en utilisant la méthode de la cohomologie d’intersection, en analogie avec la définition des représentations de Springer.
@article{AIF_2000__50_2_461_0, author = {Lusztig, George}, title = {Quiver varieties and {Weyl} group actions}, journal = {Annales de l'Institut Fourier}, pages = {461--489}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {50}, number = {2}, year = {2000}, doi = {10.5802/aif.1762}, mrnumber = {1775358}, zbl = {0958.20036}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1762/} }
TY - JOUR AU - Lusztig, George TI - Quiver varieties and Weyl group actions JO - Annales de l'Institut Fourier PY - 2000 SP - 461 EP - 489 VL - 50 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1762/ DO - 10.5802/aif.1762 LA - en ID - AIF_2000__50_2_461_0 ER -
%0 Journal Article %A Lusztig, George %T Quiver varieties and Weyl group actions %J Annales de l'Institut Fourier %D 2000 %P 461-489 %V 50 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1762/ %R 10.5802/aif.1762 %G en %F AIF_2000__50_2_461_0
Lusztig, George. Quiver varieties and Weyl group actions. Annales de l'Institut Fourier, Volume 50 (2000) no. 2, pp. 461-489. doi : 10.5802/aif.1762. https://aif.centre-mersenne.org/articles/10.5802/aif.1762/
[L1] Green polynomials and singularities of unipotent classes, Adv. in Math., 42 (1981), 169-178. | MR | Zbl
,[L2] Cuspidal local systems and representations of graded Hecke algebras, I, Publ. Math. IHES, 67 (1988), 145-202. | Numdam | MR | Zbl
,[L3] Quivers, perverse sheaves and enveloping algebras, J. Amer. Math. Soc., 4 (1991), 365-421. | MR | Zbl
,[L4] On quiver varieties, Adv. in Math., 136 (1998), 141-182. | MR | Zbl
,[N1] Instantons on ALE spaces, quiver varieties and Kac-Moody algebras, Duke J. Math., 76 (1994), 365-416. | MR | Zbl
,[N2] Quiver varieties and Kac-Moody algebras, Duke J. Math., 91 (1998), 515-560. | MR | Zbl
,Cited by Sources: