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QUIVER VARIETIES AND WEYL GROUP ACTIONS

by George LUSZTIG (*)

Introduction.

Consider a finite graph of type ADE with set of vertices I. Naka-
jima [N1], [N2] associates to v,w € N’ a smooth algebraic variety (v, w)
(“quiver variety”) and shows that the cohomology of L, 9t(v, w) has a na-
tural module structure over the corresponding enveloping algebra; note that
for fixed w, M(v,w) is empty for all but finitely many choices of v. He
also constructs [N1, Sec. 9] a Weyl group action on this cohomology space
using techniques of hyper-Kéhler geometry. In this paper we give an alter-
native construction of this Weyl group action, based not on hyper-Kéhler
geometry, but on techniques of intersection cohomology, analogous to those
used in [L1] to construct Springer representations. This gives in fact a re-
finement of the Weyl group action (see 6.13, 6.14, 6.15). I wish to thank
H. Nakajima for interesting conversations.

1. A non-linear W-action.

1.1. We fix a graph with finite set of vertices I. We assume that there
is at most one edge joining two vertices of I and no edge joining a vertex
with itself. Let H be the set of all ordered pairs 4, j of vertices such that
i,J are joined by an edge. For h = (i,5), we set h = (j,3) € H, j =h' € I,
i = h" € 1. We fix a function ¢ : H — {1, —1} such that (k) 4+ ¢(h) = 0
for all h. We often write ¢}, instead of e(h).

(*) Supported by the National Science Foundation.
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462 GEORGE LUSZTIG

Let I be the set of all sequences 41,2, . . .,%s (with s > 1) in I such that
(tk,ik+1) € H for any k € [1,s — 1]. Let F be the C-vector space spanned
by elements [iy, 12, .. .,1is] corresponding to the various elements of I and by
the elements u; indexed by ¢ € I. Let F be the subspace of F spanned by
the elements of the form [iy, 12, ...,%s]. We regard F as an algebra in which
the product [i1,12,. .. ,%s][J1, 72, - - -, Js’] iS equal to [i1,82,...,%s,J2,-- -, Js]
if 45 = 71 and is zero, otherwise.

Let E be a C-vector space with basis {w;|i € I'}. For A € E we define
Ai € Cby A =3, A\w;. For i € I we define s; : E — E by s;(\) = X
where X} = —X;, A} = A\j + A\ if (3,5) € H and X} = \; if j # 4 and
(3,7) ¢ H. Let W be the subgroup of GL(F) generated by the s; : E — E
with ¢ € I. It is well known that W is a Coxeter group with generators s;
and relations s? =1, s;8;8; = s;s;8; if (4,5) € H, 8iSj = 8;S; if i # 7 and
(i,7) ¢ H. For any A € E we define a linear map s} : F — F by
s}(uj) = u; for all j;
st i) = [i] + Nws;
s lin,d2, -+ 8s) = Z H(—Eig,it.',lAi)[ilai%'--:is;j]
J;JCJo ted
if [i1,42,...,1s] # [i]-
Here Jo = {t € [2,5 — 1]|is = i,4c-1 = G141} [61,%2,...,15; J] is the
element of I obtained from [i1,2,...,is] by omitting i;,4;41 for all t € J.
It will be convenient to define 5 : F — F as the composition
~ &~
F > F 25 F — F where the first map is the obvious imbedding and
the third map is the projection with kernel > j Cu;. We define a map
si:ExF—>ExFby

(a) (A, ) = (s:(N), s3(f))-

Let 3} = s7*. We define 3, : Ex F — E x F
(b) A ) = (8:(N), 8} (f))-

LEMMA 1.2. — The map 1.1(a) is an involution.

Assume first that i1,42,...,%s in I is other than i. Let Jy be as in 1.1.
‘We have

SiSi(/\, [’il,iQ, e ,is])
= 8; (Si(A), Z H(_sit»it+l Ai)[il,ig, e ,’l:s; j])
J;JCJo ted

ANNALES DE L’INSTITUT FOURIER
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= ( 2)\ Z H( Elth—l H (E'Ltﬂt+1 [11’12? : ’is;jl])

J,J! teJ teJ' —
JcJ'cJy
E : E : J II ]
( ( ]- | I (elt,2g+1 [117227 7287'] ])
J' g JcJ! teJ’
J'cJ ()

= ()‘> [i17i27 o azs7®]) = (Av [ilai27' . -ais])'

Next, we have s;s;(, [1]) = si(si(N), [i]+hius) = (si8i(N), [i]+hiws—Aiw;) =
(A, [1]). Clearly, s;s;(A,u;j) = (A, u;) for any j. The lemma is proved.

LEMMA 1.3. — If(,5) € H, then s;5;8; = 5;8;8; : ExF — ExF.

It suffices to show that
(a) stt(A) 31()‘) /\¢ 3131()‘) SJ(/\) )\¢

for any ¢ € F. The case where ¢ = u; for some j is trivial. Hence it suffices
to show that (a) holds for ¢ = [f] where f € I is 41,42,...,is. Note that
(a) for ¢ = [f] implies

(al) gs]s,(k)_st()x) ,\[f] _s,s_.,(A) s](/\) ,\[f]

We prove (a) for [f] by induction on s. Assume first that [f] = [¢]. Both
sides of (a) are in this case equal to [¢] + (A; + A\;j)u;. The same argument
applies to [f] = [j]. If s < 2 and [f] is not [] or [j], then (a) is obviously
true for ¢ = [f]. We now assume that s > 3.

Assume first that the first three entries of f are not of the form kik
or ljl. Let f' € I be ig,13,...,1s. We have [f] = [i1,%2][f'] and from the
definition we see that

s:jsi(’\)s;i(’\)sg\[f] _s;8i(N) _s,()\) *[f ’

= [7,1 22]8

s1e09 0 g2 A gy = 5oi55 (%) _sm) 217,

= [’Ll,lg]s

By the induction hypothesis, (al) holds for [f]; hence (a) holds for ¢ = [f].
Thus, we may assume that the first three entries of f are kik or [jl. Since
1,Jj play a symmetrical role, we may assume that the first three entries are
kik. Let u be the largest integer > 3 such that f; = (i1,42,...,%,) is of
the form jijij ... (so u is even) or of the form kikik ...k where k may or
may not be j (so u is odd). If u < s, we have [f] = [f1][f2] where f, € Lis
Ty, by+t1,---,ts and from the definitions we have

ssgsz()‘) S‘L(A) /\[f] _SJS,(/\)_S,(A) )\[f ])(—SJSI()‘) St(A) )\[f ])
szs_,()\) s]()\) ,\[f] (_s,sj(/\)_sg(z\) ,\[f ])(gs i85(A) s,()\) ,\[f ])

TOME 50 (2000), FASCICULE 2 (spécial Cinquantenaire)



464 GEORGE LUSZTIG

Since the induction hypothesis is applicable to fi and f;, we see that (a)
holds for f. Thus, we may assume that u = s. We must consider three
cases:

(b) f = fu is kik - - - ik where k # j and 7 appears u times;
(c) f = fuis jij---ji where i appears u + 1 times;
(d) f = fuis jij---ij where i appears u times.

Assume that f = f, is as in (b) and u > 1. We must show

S () () e e

! u;0<u <u'<u
u — ”
= Z (u/') (_Eij(’\i + ’\J))u “ fu”

w;0<u! <u
or that

> (“ B U") (=i )" ™ (—eihi) ™ = (—eii (N + Ap)

u—u
wju <u/<u

which is clear.

Assume that f = f, is asin (c) and u > 1. We must show that A = B
where

A= > (51) (Z;) ( )( €ij A7) T (g (N + Ag)) M T

up,ug,ug
X(—=€ijAi)* ™" fuss

0<ug<ug<u;<u
_ u U U2—U3(_ o~ (). S)) U1 U2
B = E (m) (uz) (u3)( —€jiAi) (=i (A + A5))

0<usSussur <u
X(=€5iAj)* ™™ fus-
We have
A= Z{: ] zb: a'b'c'u ,( £ijA)*(—€5i (N + X)) P (=€i5Ai)° fug
uz €[0,u a,b,c

a+btc=u—ug

u! e
- 2 (v — ug — b)!blug! (=ei (A + X)) b

uz€[0,u] bE[0,u—us) b
X (—Eji(/\i + )\)) fu3

= Z Z (u~— u3ti'b)|b|u |( 1) (=55 (hi + A)* ™™ fus

uz€[0,u] bE[0,u—ugz)

!
= 2 (e ) s = o,
u3!

u3z€[0,u]

ANNALES DE L’INSTITUT FOURIER



QUIVER VARIETIES AND WEYL GROUP ACTIONS 465

B = E Z a'b‘c'u |( €5ida)*(—€ij (A + A )) (—€5iXj)° fus

u3€[0 ul +b+c—u ug

! o
2 2 (u— u;i b)!blus! (CHONEPY))

u3z€[0,u] bE[0,u—wus)] b
X (=€i5(Ai + A7) fus

Z Z (u - u3li! b)'b'u;;' (_1)b(—5ji()‘i + Aj))u_uafug

uz€[0,u] bE[0,u—uz]

u! —us
D e (O + ) T fus = fo.

uz €[0,u]

I

I

Thus, A = B as desired. Next we assume that f = f, is as in (d) and
u > 1.We must show that A = B where

= T )

ul,u2,u3
0<ug<ug
1<uz<u; <u

X(—€iA:)" T fug + (—€i2:)" (fo + (A + Aj)uy ),

T S 4 e [

ui,u2,u3
1<ug<uz<u;<u
—u u—1 u u—
X(—€gjir)* ‘fus+2(ul_1>(—6i;‘(>\i+>\j)) H(—girg) T (fo + Aiwy).
U1

1<y <u

We have A = Zuse[ﬂ,u] Auafus + auj, B = zuae[(),u] Buafua + ﬂuj,
where

u! uz +a a c
A= Y alblclu! U3+a+b(_eij)‘j) (—&5i (i + 2))°(—ei5 M),

a,b,c
a+bt+c=u—ug

(u—1)! uz+a-+b
Bu, = zb: alblc(uz —1)! wus+a (=e5i2)*(=eii(hi + 1))

a+btc=u—ug

x (—€;ig)°
for ug € [1, 4],
u! a a c w
A=) prE A R (—€3i(h + X)) (=i X)° + (—es5)",

a,b,c
a+btc=u
a>1

By = (—&i(Ni + Aj))(—eij M),

TOME 50 (2000), FASCICULE 2 (spécial Cinquantenaire)
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a = (—eijA)"(\i + Aj),
p= Z (,:1 )( €ij(Ai + 7)) (—€5idg) T .

u1;1<u1<u

It is enough to show that
(e) Aus = By,
for uz € [0, u]. (The equality o = 3 is obvious.) We have

Ap = (—€ij)j) 2:

a+b+c_u

a>1
X (—gji()\i + /\j))b(—eij)\i)c + (—Eij/\i)u

u! —c— c u
= (—€ijA5) Z e (=i M) T T (=i M) + (=i i)

a—1
nwaa+ﬁ giiy)

—c)le!
c€l0,u—1] (u—c)el
=(-eis) D (—-—;)—,—,( €5iXa) " TH(=1)° + (—esiN)*
cel0,u—1]

= (—eiA) (=€) TH=1) T+ (—ei k)™
= (—€i50)" " (=€ij(\i + X)) = Bo.
This verifies (e) for ug = 0. Assume now that uz € (1, u]. The identities

m Y G- 1

1961 — — — — ’
pl’pz;p1+pz=pp1'p2'(x p2)  z(z-1(@-2)(z-p)

-1\ (g +
(h) 3 M b0m by,
P1,P2;p1+p2=p p1:p2:
for p € N, are easily verified. We set X = —¢;;);,Y = —¢;;\;. Then A,
equals

u' us +a b, 4-b. b b.
E ] 1 2 Xa X 1 Y 2Yc
a'bl'b2'c'u’3' ug ' a bl b ( )

a,by ,bg,c
a+by+ba+c=u—ug

u! uz +a by4b b
= 1)b1+b2 xa+byyctbe
Z albylbo!clug! us + a+ by + b2( )

a,by,by,c
a+by+by+c=u—ug

u! uz+a xo
= E uz! Z alby! (1™ Z b2'c' —c) Y?

a+ﬂa='5—‘u3 ' a+bl =o +b2 '3
u! 1
= L (uab + 6 ays
D T EEN T R
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u! us

—_— Yu—ug
ugl u(u — 1)(u —2)- U3
ul

1
Tl w1 @-2) (uz 1)
=YuTUs 4 XYuTuel = (X 4Y)yuuel,

and B,, equals

qu—ua—l

(u—l)' uz +a+ by + ba b
Y)Yyt Xt (- X)e
a,g—:’bz,c albylbo!cl(ug — 1)! uz +a (=¥) (=X)
a+by +bg+ec=u—ug
_ 3 (u—1)! u3 +a+ by + by (—1)@Feyeth xbate

b 1bs! ! — 1\
oy orc a.bl.bz.c.(ug 1). us +a
a+by +by+c=u—ug

(u—1)! (=1
Z (uz — 1)! Z alby!(us + a — by)

«,B a+bi=a
a+pB=u—ug _1 c +b )
x Z ( ) (’LL3' +'a 2 Yaxﬂ
ctba=p C.bg.
T 2 ) Geralaran ) g (e F o)+ BV X
atB=u—ug

= Yu—us + XY’II.—U3—1 — (X + Y)Y"‘—“3—1_

Thus, A,, = By,. The lemma is proved.

LEMMA 14. — Ifi # 7, (4,7) ¢ H, then s;s; = s;s; : E X F o
E x F.

As in the proof of 1.3 it is enough to show that sj"(’\)s;\[f] =

s} (A)s;‘[ f] for f € I of the form kik---ik where ¢ appears u times. This
follows immediately from the definitions.

1.5. From Lemmas 1.2, 1.3, 1.4 we see that there is a unique W-action
on E x F in which the generators s; acts by 1.1(a). This W-action is not
a linear one.

Now 1.2, 1.3, 1.4 remain true if the s? are replaced by 3); these new
statements are obtained from 1.2, 1.3, 1.4 with u;, €;; replaced by —u;,
—€;j. Hence there is a unique W-action on E x F in which s; acts by 1.1

(b).

TOME 50 (2000), FASCICULE 2 (spécial Cinquantenaire)



468 GEORGE LUSZTIG

2. The set Zp.

2.1. Let C° be the category whose objects are I-graded C-vector
spaces V = @;crV; with dimV; < oo for all i. For V € C°, we set

_ We fix D € CO Let .7?]3 be the vector space of all linear maps
F — End(D); here End(D) is understood in the ungraded sense.

For i € I and A € E we define a map Fp — fD by associating
tom : { — End(D) the composition F A F 5L End(D). This map
.7~'D — Fp is denoted again by s’\ We now define s; : E x Fp — E x ]-'D
by s;(A\,m) = (si()\),s}(m)). Since s} = (5})71, from 1.5 it follows that
there is a unique action of W on E x .7-"D such that foranyiel, s; e W
acts in the way just described. Following [L4, 2.4], we define a subset Zp
of E x Fp as follows. An element (A, 7) € E x Fp is said to be in Zp if it
satisfies conditions (a), (b), (c) below. (For ¢ € F we write 74 instead of
m(¢) : D — D).

(a) If f€elisiy,...,i,, then my maps D;, into D;; and maps D; to 0,
for j # is.

(b) For any ¢ € I, m,, is the identity map on D; and is zero on D, for
J#i

(¢) For any f, f' € I such that f ends and f’ begins with the same ¢ € I,

we have
TR = D EkTAfikil[f] — M)
k

where k runs over the set of vertices such that (i,k) € H.
PROPOSITION 2.2. — Zp is a W-stable subset of E X ]T'D.

Let (A\,7) € Zp. Let i € I and let (X, ) = s;(\,7) € E x Fp.
It is enough to show that (N,n') € Zp. It is clear that (\,n’) satisfies
conditions 2.1(a),(b). To verify condition 2.1(c), we consider nine cases. In

the other cases, the result is trivial. In the following formulas, an expression
like

W[**ui]ﬂ'[iu**] - Z aijw[**uijiu**] - 25iu(5iu/\;)7f[**uiu**]
—eiu(EiuA;j)27r[**u**] + /\«,L"”[**uiu**] + A;(Eiu)\::)"r[**u**]
should be interpreted as follows: each of

T wxwi] T [guxs]s T xxuijiusrs]s T exuss]s T xruiusx]

ANNALES DE L’INSTITUT FOURIER



QUIVER VARIETIES AND WEYL GROUP ACTIONS 469

over the same index set, with the same coefficients.

Case 1.
Ty = D i + Ay
J
= (m — i) () — M) — Y €45 + N (g — N,

= —/\m[,-] — /\§7r[i] =0. ]
Case 2. Assume that (u,i) € H.
T T = D EuiTuza] + XuTu
J
= M) M) — Z EujMuju] — Eui(€iuAi) M) + Xy

J
= —)\uﬂ'[u] + )\;ﬂ'[u] + )\;ﬂ'[u] =0.

Case 3.
Wfilwf’ik"'] - Z Eijﬂfijik---] + )‘;:Wfik..‘]
J
= (M) = XiTru ) Tikes] = Z €ijMigikes] = ik (EikN) Tiikun] + NiT[ikun]

J
= —Aiﬂ'[ik**] - A27".[111‘:=t<=|<] =0.

Case 4. Assume that (u,%) € H.

’ ’ ’_t
qu]ﬂ.[u] - Z €uj7r[uju._‘] + Auﬂ-[u]
J
= M) Muks] — Z Euj T ujuss] — 5ui5iu’\£7r[u**] + A:,,ﬂ'[u**]
J
= —/\u7r[u**] + A;ﬂ'[u**] + ’\;W[u**] =0.

Case 5.
Toeok) M) — Z €5 M.kiji) + N[ ki)
J
= W**ki(mi] — AiTty,;) — Zsijﬂ'[**kiji] - Eik(€ik)\§)7f[**ki] + A;”[**ki]

J
= ~XiTfaaki] = NiT[eeki] = 0.

TOME 50 (2000), FASCICULE 2 (spécial Cinquantenaire)



470 GEORGE LUSZTIG

Case 6. Assume that (u,i) € H.

/ / / !’ _!
M) M) — Z EuTouju) T AT
J

= 7T**u7T[U] - Z 5uj7rl**uju] — Eui (EiuAg)ﬂ’[**u] + A:‘ﬂ-[**u]
J
= —)\uﬂ'[**u] + A;"r[unk'u,] + /\;‘ﬂ'[**u] =0.

Case 7.

/ ' 7 1_7
o) T ] — Zeijﬂ'[muijiuw] + /\iﬂ'[...uiu...]
J

= Tleoxui] T liuxs] — Zeij"r[**uijiu**] - 25iu(€iu)\2)7r[**uiu**]
J
— Eiu (Eiu/\{i)zﬂ-[**u**] + A;;71-[*=|c’u'i'u>|==t=] + A: (eiu)\g)ﬂ.[**u**]

= _Aiﬂ'[**uiu,**] - A:;ﬂ[**uiu**] =0.

Case 8. Assume that u # v.
an-u'i]ﬂ.fiv--»] - Zeijﬂ.fmuijivm] + /\;Wf...u,'v...]
J
= Twwud] Mivesx] — Zeijﬂ[**uijiv**] - Eiu(eiu)‘;)"r[**ll'iv**]
J
— &y (Eiv/\g)ﬂ'[**uz‘v**] + /\;;7r[**uiv**]

= _)\iﬂ'[**uiv**] - )\;ﬂ[**uiv**] =0.

Case 9. Assume that (u,3) € H.

= W[**u]'ﬂ'[u**] - Z €uj7r[**uju**] - Eui(siuAfIi)ﬂ'[**u**] + )‘:‘W[**u**]
J
= —/\uﬂ'[**u**] + A;”r[**u**] + A;ﬂ-[**u**] =0.

The proposition is proved.

2.3. Consider the action of C* on E x Fp given by
t:(A\m) = (A1)

where 1rff] = t"*ny for f € L of form 4y,...,%, and 7, =7, fori € I. It
is easy to check that this restricts to an action of C* on Zp which commutes
with the W-action.

ANNALES DE L’INSTITUT FOURIER



QUIVER VARIETIES AND WEYL GROUP ACTIONS 471

2.4. Consider the action of Gp on Zp given by
(gz) : (/\,71') = (Aa ,”I)
where wff] = 9i,m[5)9i, C for f € I of form 4y,...,is and 7, = m,, for

1 € I. Tt is easy to check that this action commutes with the C*-action and
with the W-action.

3. The varieties Ap .

3.1. Given D,V € C°, let Mp v be the vector space consisting of all
triples (z,p, q) where

= (Th)heH, n € Hom(Vy/, Vi),
p = (pj)jer,p; € Hom(Dj, V),
q = (gj)jer,q; € Hom(V;,D;).

Following [N1], let Apv be the affine variety consisting of all
((z,p,9),A) in Mp v x E such that
(a) Z ERTRTh — Piqi — A=0:V; -V,
hih! =i
for all ¢ € I. For any A € E let Ap v, be the affine variety consisting of all
(z,p,q) € Mp v such that (a) holds; this may be naturally identified with
the fibre at A of the fourth projection Ap v — E.

The group Gy acts on Mp v in a natural way (see [L4, 1.2]); this
induces an action of Gv on Ap v and on Ap v ) for any A € E.

3.2. In the remainder of this section we fixi € I, D, V, V' € CO\, XN €
E such that X' = s;(\) and V; =V for j € I — {i}; dim V; + dim V] =
dimD; + Zh;h,:i dim V. Let U = D; @ ®p.p=; V. Let F be the affine
variety whose points are the pairs ((z,p,q); (z',p’,¢')) € Mpv X Mp v-
such that conditions (a)—(d2) below are satisfied:

(a) the sequence 0 — V! % U 5%V, > 0is exact; here, a =

(%{7 (mﬁ)h;h'm‘) and b = (p;, (Eﬁxh)h;h”:i);

(b1) we have bb—ad =\, : U — U where a = (p}, (erxh)hshr=i) 1 U — V)
and b = (gi, (Th)n;hr=i) : Vi = U;

(b2) ep(zzzn — a;%xﬁl) = §; 7N + Vi — Vg, for any h,h such that
R =i,k =1i; q¢ip; — g;p; = A, : D; — Dy; zpp; — z3,p; = 0 for any h such
that b’ = i;q;z, — ¢ix}, = 0 for any h such that h” =7,

TOME 50 (2000), FASCICULE 2 (spécial Cinquantenaire)



472 GEORGE LUSZTIG

() zh=uz, N #i,h" #i;p; =pj,q; =q; ifj #4;
(d2) Zh =i ERTRTH — Pjq; = Nj : Vj — Vjif j # i,

Remarks.

(i) Conditions (bl), (b2) are equivalent.

(ii) In the presence of (b2), (c), conditions (d1), (d2) are equivalent.
Indeed, let § be the difference of the left hand sides of the equalities in
(d1), (d2). We have 6 = 37, ,,_; ex(zrzn — 737},) — pjg; + Pjqj. Using
(c) we see that 6 = 37, 1/ pve; €n(TRTh — T32),) and, by (b2), this is
Nif(h; B = j, h" = i), which equals A\; — \’.

(iii) For a point in F' we have automatically > ,.,,_; 5252}, — Pig; =
AL Indeed, since a in (a) is injective, it is enough to show that
(%) Z s,—la;'ﬁx;—lxg - a;"vlpgqg - )\:xfﬁ =0:V;—> V5,

h;h/=i
for any h such that A’ = and
(%) Z ERGiTHTH — 4iPig; — Nig; = 0: Vi — D],
h;h/=1
By (b2), the left hand side of (*) is
Z ERTTRTH — TyPid)
h,h/ =i
and this is 0, by (a). Again by (b2), the left hand side of (¥x) is
> enaizazh — qipid]
h;h/=i
and this is 0, by (a).

(iv) For a point in F' we have automatically >, ,/; ERTRTH — Pigi =

;. Indeed, since b in (a) is surjective, it is enough to show that

h;h!/=1
for any h such that A" =i and
(x+) > erzpanpi — pigipi — Mipi =0:D; - V.
h,h/=1

By (b2), the left hand side of (x) is

PR A | LSS Y e
E ERTRTRTY — iy pig; Ty iy
hih!=i
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which by (a) equals—Ajzr — A\;z; = 0. Again by (b2), the left hand side of
(%) is

Z ERTRTRP; — PidiP; — NiPi — \iDi
h,h'=1i

which by (a) equals —\p; — A\ip; = 0.

3.3. From Remarks (iii), (iv) in 3.2, we see that the first (resp. second)
projection is a well defined map r : F — Ap v » (resp. v’ : F' — Ap v/ ).

3.4. In the remainder of this section we assume that \; # 0. In this
case, for any (z,p,q) € Ap,v,x, themap b : U — V; (as in 3.2(a)) is
surjective. Indeed, the identity map of V; is equal to —A; 1 bb with b as
in 3.2(b1).

Similarly, for any (z’,p’,q') € Ap,v/,»/, the map a : V] — U (as in
3.2(a)) is injective. Indeed, the identity map of V/ is equal to —\,"* C @a
with @ as in 3.2(b1). The group

G =GL(V:) x GL(V})) x [] GL(V;)
Jii#i
acts naturally on F,Ap v x,Ap,v/,» compatibly with the maps 7,7/, so
that the G action on Ap v x factors through the Gv-action in 3.1 and the
G action on Ap v,y factors through the analogous Gv--action.

PROPOSITION 3.5.
(a) 7 is a principal GL(V})-bundle.
(b) 7’ is a principal GL(V;)-bundle.

We prove (a). We fix z = (,p,q) € Ap,v,x- Then r~! C (z) may be
identified with the set of all pairs (a, @) where

a = (qza (xh)h h/= 1,) € Hom( 2) U)» a= (p;a (E;Lx;z)h;h”:i) € Hom(U, V:)
are such that 3.2(a),(bl) hold. (Then 3.2(d2) holds automatically by
3.2(ii).) We show that the first projection establishes a bijection

(c) {(a,a)| 3.2(a),(bl) hold } = {a] 3.2(a) holds}.

Let ¢ =Eb~)\§ :U — U where b = (i, (Th)hshr=i) : Vi — U. Assume that a
satisfies 3.2(a). We must show that there is a unique linear mapa : U — V|
such that aa = ¢, or equivalently, that the image of ¢ is contained in the
image of the imbedding a (that is, in the kernel of b). Thus, it is enough
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to show that b¢p = 0, or that bbb — Ab = 0. It is also enough to show that
bb — A} = 0. This is clear.

We see that r~! C (z) may be identified with the set of alla : Vi — U
such that 3.2(a) holds, or equivalently (since b is surjective) with the set of
all isomorphisms of V onto Kerb. This is clearly isomorphic to GL(VY).
This proves (a).

We prove (b). We fix (z',p',¢') € Ap,v . Then r'~! C (z’) may be
identified with the set of all pairs (b, b) where

b= (pi, (€52h)hpr=i) € Hom(U, Vi), b= (g, (Zn)nn=i) € Hom(V,,U)

are such that 3.2(a),(b) hold. (Then 3.2(d1) holds automatically by 3.2(ii).)
We show that the first projection establishes a bijection

(d) {(6,)|3.2(a), (b1) hold} = {b|3.2(a)holds}.

Let ¥ = aa+ A, : U — U where a = (p}, (€52}, )h;h=i). Assume that b
satisfies 3.2(a). We must show that there is a unique linear map b: V; —» U
such that bb = 1, or equivalently, that the kernel of b (that is, the image
of a) is contained in Ker . Thus, it is enough to show that ¥a = 0 or that
aaa + Ma = 0. It is enough to show that aa + A, = 0. This is clear. We
see that /=1 C (') may be identified with the set of all b: U — V; such
that 3.2(a) holds, or equivalently (since a is injective) with the set of all
isomorphisms of the cokernel of a onto V;. This is clearly isomorphic to
GL(V,). This proves (b). The proposition is proved.

COROLLARY 3.6. — The maps r,r’ in 3.3 induce bijections
(a') AD,V,/\/GV e F/G = AD,V’,)\’/GV’

where orbit spaces are taken in the set theoretical sense, and isomorphisms
of affine algebraic varieties

(b) Apv//Gv <~ F//G = Ap v/ x//Gv:

where the orbit spaces are taken in the algebraic geometric sense.

COROLLARY 3.7. — Assume that D = 0 and let
dy = (1/2) ) _ dim Vi dim V.
h

Then Ao,v,» has pure dimension dy if and only if Agv- x has pure
dimension dv.
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We set v; = dimV;,v; = dim'V}. The two conditions above are

equivalent to the condition that F has pure dimension dv + v/2, (resp.

dv’ + v2). So it is enough to prove that dy — dv = v2 — /2. We have

dv —dv: = E UpnVi — E UiV = E vp (Vi — ;)
hihi=i hsh/=i hih/=i

/ / 2 12

=i+ v)(vi —vj) =v; —v;".

The lemma is proved.

4. The subsets Zp v and vZp of Zp.

4.1. In the remainder of this paper we assume that our graph is of
finite type, that is, W is a finite group.

Let E' = Hom(E, C). We shall regard 7 € I as an element of E’ by
i(w;) = 6;5. For any i € I, we define o; € E by a; = 2w; — Zh;h,zi Oh .
Then {a;,i} form a root datum and W is its Weyl group. For v € E’ we
define v; € C by v = ). v;i. The action of W on E induces an action of
W on E', given by s; : £ > 5;(§) = &€ — £(;)i. Let R be the set of vectors
in E’ of the form w(7) for some i € [,w € W. For X € E let

Ry = {& € R|a()) = 0}.
4.2. Let Ey be the set of all A € E such that for any 7 we have either
Re(\;) > 0, or Re(\;) =0 and Im(A;) > 0.
LEMMA 4.3. — Any W-orbit in E meets Fy in a unique point.
This is well known.

LEMMA 4.4. — Let V € C° ) € Ey. Assume that Ao v » # 0. Then
for any i € I we have either \; =0 or V; = 0.

Let ((zr),0,0) € Ao v,x. We have
Do Adim Vi =) Tr(A;, Vi) =D Tr( Y exzsza, Vi)
i [ i h

sh!=1
= Z ER Ti(z,-l:rh, Vh/).
h
In the last sum the term corresponding to h, h cancel out. Hence the sum

is zero and we have
> AidimV; =0.
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Let I' = {i € I|V; # 0}. Write Re(\;) = X,,Im()\;) = A/. Then
2 icr Aidim V; = 0, hence

D NdimV;=0, Y A/ dimV;=0.

iel’ i€l
Since A; € R for all 4, we deduce that for any ¢ € I’ A} = 0, hence A > 0.
Hence the equality ) ;. A dim V; = 0 implies A{’ = 0 for all ¢ € I'. Thus,
for i € I' we have A; = A} = 0 hence A; = 0. The lemma is proved.

PROPOSITION 4.5. — Let V € C°, A € E be such that Ao v, # 0.
Then

(a) Ao, has pure dimension dvy;
(b) Gv has a unique closed orbit in Ag v »;

(c) if Ry =0, then V = 0.

Assume first that X € Ey. Let Iy = {i € I|\; = 0}. Clearly,Iy C R;.

We prove (a). We may replace the datum (I,H,---) in 1.1 by
(Zo, Ho, - - -) where Hy = {h € H|W' € Iy,h” € Iy}. Using Lemma 4.4, we see
that Ag,v,» may be identified with Ag v/ o defined in terms of (Io, Ho, - - )
where V' is the Io-graded vector space defined by V, = V; for ¢ € Iy. By
[L3, 12.3], Ag,v’ 0 has pure dimension dv-. Since V; = 0 for ¢ ¢ Iy, we have
dv = dvy. This proves (a).

We prove (b). As in the proof of (a), we are reduced to the case where
A = 0. In that case the result is contained in [L4, 5.9].

We prove (c). Assume that Ry = @ and V; # 0. By Lemma 4.4, we
have \; = 0 hence ¢ € R,\, a contradiction.

This completes the proof of the proposition under the assumption
that A € Fy. We now consider the general case.

For any A € E, let 7 = r) be the smallest integer > 0 such that there
exists a sequence A = A%, Al,..., A" in E and a sequence i1,%9,...,4, in I
with the following properties:

N e Ey, M =5;,(A0), 2 =5,(\),..., A" =5, (A1), M #£NT!

for j = 0,1,...,r — 1. Note that r) is well defined by 4.3. We prove the
proposition for A € E (and any V such that Agv x # @) by induction on
rx. If ry = 0, the result is clear by the first part of the proof. Assume now
that 7, > 1. By definition, we can find 7 € I such that A’ = s;(\) # A and
ryx =71y — 1. Since X' # A, we have \; # 0. We define U, b: V; — U as in
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3.2 (with D = 0) in terms of some (z,0,0) € Agv, x. As in 3.4, from A; # 0
we deduce that b is surjective. Hence dim V; > dimU = Zh; pr=i dim Vi,
Hence there exists V' € C° such that
V; =V forjeI—{i};
dimV; +dim V] = )" dim V.
hih!=i

By 3.6(a), Ao,v’,n» # 0. By the induction hypothesis, the proposition holds
for (V',X). Using 3.7, we see that (a) holds for (V,)). Using 3.6(b),
we see that (b) holds for (V,)\). Finally, assume that Ry = @. Then
Ry = s;(Ry) = 0. Hence V' = 0, by the induction hypothesis. Then the
formulas above relating V, V; show that V; = 0 for all j. The proposition
is proved.

4.6. Let D € C°. For any f € I of form 41,4s,...,is and any linear
form x : Hom(D;,,D;;) — C, we define a function b¢, : Zp — C by
bsx(A\,m) = x(ms)). For any i« € I, let § : Zp — C be defined by
& (A, m) = A Let By be the C-algebra with 1 of functions Zp — C
generated by the functions by, for various f,x as above and by the
functions &; with ¢ € I. An argument almost identical to that in [L4, 5.3]
shows that B; is a finitely generated algebra and that Zp is naturally in
bijection with the set of algebra homomorphisms B; — C. Thus, Zp has
a natural structure of affine variety.

Now let V € C°. As in [L4, 2.12], we define a map ¥' : Ap v — Zp
by (z,p,q,\) — (A, 7) where m € Fp is given by
T(f] = Qiy TiyiaTigyis ** " Tig_y,isPi, * Di, = Dy
for any f € I of form 41,4s,...,%s with s > 2,
Ty} = ¢ip; : Dj = D;
for any j € I and m,, is as in 2.1(b) for any i € I.
The map ¢ : Ap,v — Zp is easily seen to be a morphism of algebraic

varieties. Since this map is constant on the orbits of Gv on Ap v, it induces
a morphism ¥ : Ap,v//Gv — Zp of algebraic varieties.

THEOREM 4.7. — 9 is a finite, injective morphism. In particular,
it is a homeomorphism onto its image (both in the Zariski and ordinary

topology).

The finiteness of ¥ is proved as in [L4, 5.8]. The injectivity is proved
in [L4, 5.10] modulo the statement [L4, 5.9] which at the time of writing

TOME 50 (2000), FASCICULE 2 (spécial Cinquantenaire)



478 GEORGE LUSZTIG

[L4] was only known for A = 0 but is now known without restriction, by
4.5(b).

4.8. Let Apy be the open subvariety of Ap v consisting of all
(z,p,¢,A) € Ap,v such that the following stability condition holds: if V'
is an I-graded subspace of V such that z,(V},) C V},, for all h € H and
pi(D;) C VI forall ¢, then V' =V.

Let Afy y be the open subvariety of Ap,v consisting of all (z,p,q,A) €
Ap. v such that the following stability condition holds: if V' is an I-graded
subspace of V such that z,(V},) C V}, for all h € H and ¢;(V') =0
for all i, then V' = 0. A}y, Af5 y were introduced in [N2], in a different
notation.

For any A € E, let A}y, (resp. A5y ,) be the open subvariety
of Ap v,» consisting of all triples (z,p,q) € Ap,v,» such that (z,p,q, )
belongs to A3y, (resp. to Apyy). Then Apy \ (resp. Afy ,) may be
naturally identified with the fibre of the fourth projection Ap, vy — E (resp.
A5 v — E) at A

By [N2], the natural action of Gv on Ay, y; or ARy, is free; hence the
orbit spaces Ap v/Gv, AR v/Gv are well defined.

4.9. There is a natural isomorphism Ap, y = Ap. v.; it is given by
(z,p,q,)) — (*z,%q,'p, \). (Notation of [L4, 2.27].)

4.10. Let A‘B”‘\SI = Apv NApSy. For any A € E, let ABT‘S,’)‘ =
*8

S
Ap v NAB v -

LEMMA 4.11. — The following two conditions for (z,p,q, \)
Ap v are equivalent:

(i) (z,p,¢,)) € AB'y;

(ii) (z,p,q, ) has trivial isotropy group in Gy and its Gy-orbit in
Ap v is closed.

m

Assume that (ii) holds. Then (z,p,q,\) € Ay by [N2, 3.24]; the
same proof shows that (z,p,q,A) € Ap v, hence (i) holds.

Assume now that (i) holds. Then the first assertion of (ii) is proved in
[N2, 3.10]. It remains to prove the second assertion. Let O be a Gy-orbit in
the closure of the orbit of (z,p, g, A). By Hilbert’s theorem, there exists a
one parameter subgroup (; of Gy (t € C*) such that lim; o (:(z,p,q,A) =
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(@',p',q',)) € O. We can write V = @, VF where ;v = tFv for all
v € VF. Let V) = @50, VF. We have z4(v) = 3, Thx kv for v € VE,
where T 13 VE — VE,. We have p(d) = 3, p®)(d) for d € D where
p* : D — VE. For t € C*, write (;(z,p,q) = (z(t),p(t), q(t)). We have

o(t)h =Y T ptt 5, p(t) = thp*)
k' k

and q(t)(v) = t7Fq(v) for v € V*. Since lim; o Ci(z,p,q, ) exists, it
follows that zp.xx = 0 for &' > k, p¥) =0 for k > 0, qlvk =0 for k < 0.
Hence V(~1) is z-stable and contained in Ker(q). Since (z,p,q, ) € Ab v,
it follows that V(=1 = 0 and p(D) C V. (Up to this point, the argument is
exactly as in [N2, 3.20].) Moreover, for k > 0, V(¥) is z-stable and contains
Im(p). Since (z,p,q, ) € Ap v, it follows that V*¥) =V for k > 0. Thus,
V = VO hence (z',p',¢,\) = (z,p,q,\). This proves that the Gy -orbit of
(z,p,q,A) is closed. The lemma is proved.

LEMMA 4.12.

S,%8

a) The map Gv — Zp induced by ¥ : Ap v — Zp is injective.
D,V ;
(b) Its image, Zp,v, depends only on the isomorphism class of V in C°.

(¢) Zp,v is a locally closed subvariety of Zp and is homeomorphic (both

$,%8

for the Zariski and ordinary topology) to Ap'y/Gv.

(d) The subsets Zp v (for V running through a set of representatives of
the isomorphism classes of objects in C°) form a partition of Zp.

We prove (a). Our map is the composition

Ay /Gy — Apv//Gv 2> Zp

where the first map (the obvious one) is injective by 4.11 and ¥ is injective
by 4.7. This proves (a). The proof of (b) is trivial.

We prove (c). From 4.11 we see that A'y,/Gv is an open subva-
riety of Ap v//Gv and from 4.7 we see thatAp v//Gv is mapped by ¢
homeomorphically onto a closed subvariety of Zp. This proves (c).

We prove (d). Let (\,7) € Zp. Let V = EP/K™ (notation of [L4,
2.3, 2.8]). We have V € C° by [L4, 5.12]. We define (z,p,q) € Ap,v
as in [L4, 2.18] (with V¥ = K™). As pointed out in [L4, 2.18], we have
(z,p,9) € Ap v and ¥'(z,p,q,2) = (A, 7). From the definition of K™ we
see also that (z,p,q) € A5y - Thus, (A, 7) € Zp,v. We see that the union
of the subsets Zp v is the whole of Zp.
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Now let (A\,7) € Zp,v N Zp,v» where V,V’ € C°. We want to
prove that V,V’ are isomorphic in C°. We can find (z,p,q,\) € DV
and (z',p',q',A) € AR’y such that ¥'(z,p,q,A) = 9'(2',p',¢', A) = (A, 7).
By [L4, 2.20] we can assume that V = P /V, V' = £€P/V’ (notation of [L4,
2.3]) where V, V' are I-graded subspaces of £P containing Z™ and contained
in £™ (notation of [L4, 2.8]), that (z,p,q) is obtained from V as in [L4,
2.18] and that (z’,p’,q’) is obtained in an analogous way from V’. From
the definition of K™ we see that the condition that (z,p,q,\) € AL ¢o v
is equivalent to the condition that V = K™. Similarly, the condition that
(',p',¢',A) € Ap ¢o v i equivalent to the condition that V' = K™. Hence
we have V = V' = K™. It follows that £P/V = P /V’ and our claim follows.
The lemma is proved.

LEMMA 4.13.

(a) The morphism AHv/Gv — Zp induced by ¥ : Apv — Zp is
proper. Hence its image, v Zp, is a closed subvariety of Zp.

(b) vZp depends only on the isomorphism class of V in C°.

Our map is the composition

Apv/Gv = Apv//Gv 2 Zp

where the first map (the obvious one) is proper by [N2, 3.18] and ¥ is proper
by 4.7. This proves (a). The proof of (b) is trivial.

5. A computation of dimensions.

LEMMA 5.1. — Let V,D € C° The varieties A5+, Apy are
smooth of pure dimension

2dv + 2Zdimvi dimD; — Zdimv,? + 1|
and the fourth projections Ay — E,Ap  — E are submersions.

The fact that A5y o is smooth is proved in [N2, 3.10]. That proof
identifies the tangent space of A5y ¢ at (z, p, q) with the kernel of a certain
linear map m : Mp v — Homeo(V,V) (obtained by taking the derivative
of the equation defining Ap v ). The main point is that m is surjective
(which follows from the stability condition in the definition of AFy o). A
similar argument shows that AfSy, is smooth and that the tangent space
of Al v at (z,p,q, ) is {(k, X) € MDV®Elm(k)+/\’ = 0} where m is as
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above and, in the last equation )\’ is regarded as an element of Homco (V, V)
whose i-component is multiplication by A;. This tangent space maps to the
tangent space of E at A by (k,\') — M. Using the fact that, as above, m
is surjective, the assertions relative to Ay'y, follow. These assertions imply
the assertions relative to Ay, y;, by 4.9.

5.2. Let A € E. Given (z,p,q) € Ap,v,, let V' be the largest I-
graded subspace of V such that z,(V},) C V}, for all h and ¢;(V}) =0
for all 7. Clearly, V' is well defined. Note that(z, p, ¢) induces in an obvious
way elements

(xl’()’ 0) € Ao,vi s (I”7 P”, q”) € A;DS,V/V’,/\'
Conversely, assume that we are given an I-graded subspace V' C V and
elements (z,0,0) € Ao v+.x, (2",0",4") € Afas,v/v',x

Let @ be the set of all (z,p,q) € Ap v x which give rise as above to
VI’ (xl’ 07 0)7 (x/l’p/,’ q”)'

LEMMA 5.3. — A choice of an I-graded complement V" of V' in
V defines on ® a structure of vector space of dimension
(a) 3 dim V; ( dimD; —dimV{ + Y dim V;{,,) .
i hih/=i

Let V" as above. We identify V/V’ = V" in an obvious way. For
(z,p,q) € ® we have
oa(e") = (o) + 2 (0")
for all v" € V7, where
Y= (Yn)her, Yn: Vi — Vi,
zp(v') =z, (v") for all o' € Vj,,
pi(d) = p;(d) +p;i(d) for d€D;,
p;: Dy = Vi, pi:D; > VY,
g (V") = ¢/ ("), forall v € V.
By the change of variable (z,p, q) — (y,p’) the variety ® becomes the set
of all (y,p’) as above such that
D caThyn +enyeh —pig) = 0: V! = V]
hih!=i
for all ¢ € I. The solutions of this system of equations (with fixed z’, ", ¢")

form a vector space. It remains to show that this vector space has dimension

as in (a). This vector space is the kernel of the linear map
T : &, Hom(V},, V) ® ®; Hom(D;, Vi) — @; Hom(V/,VY),

%
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@.p) = (X enahun +envich —plaf) .
h;h!=1 el

We will show that T is surjective; this implies that dim Ker T is given by
(a). To show the surjectivity of T', we consider the perfect bilinear pairing
@®; Hom(V}, V) x &; Hom(V/,V]) - C

1

given by ((a;), (b;)) = Y ,tr(a;b;). It is enough to show that, if (a;) is
orthogonal to Im7T under this pairing, then (a;) = 0. Thus, we assume
that

> ertr(anzhyn) + &5 tr(anypzy) — Y tr(aipig)) =0
h [

for any (y,p’). Equivalently,

> entr((anzh — ghan)yn) — Y tr(g)aip}) =0
h 1

for any (y,p’). It follows that

(¥) apcy — zjap =0 for all h,

() ¢'a; =0 for all i.

(*) shows that Im(a) is an z’-stable I-graded subspace of V”; (x*) shows
that Im(a) C Ker(q"”). By the stability condition for (z”,p",q"”), we then
have Im(a) = 0 hence a = 0. (Compare with the argument in the proof of
[N2, 3.10].) The lemma is proved.

5.4. Now let D, V,V € C° and let (\,7) € vZp NZy - By definition,
(A, 7) is in the image of the map

(a) Af),v — Zp
(restriction of ¥’) and there is a unique (Z,p,q, \) € A:D’T% which maps to
(A, ) under the map ¥’ defined in terms of V.

Let ¥ be the fibre of (a) at (A, ).

PROPOSITION 5.5. — ¥ has pure dimension equal to
(1/2)(dim Ap, v/Gv — dimA:)’V/Gg) + dim Gy.

If (z,p,q,)\) € ¥ then, by attaching to it
(a) V/, (ZL'/, O, O) 6 AO‘VI’A, (x”,p", q”) € A;)s’v/v/’x

as in 5.2, we have automatically (z”,p",q") € AR’y Jv7,x; moreover, from
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the definitions, ¥ (relative to V/V”) carries (z”,p”,q¢", A) to ¥ (z,p,q, ) =
(A, 7). Using now 4.12(a), we see that there exists an isomorphism (neces-
sarily unique)

(b) ¢:V/V = V which carries ",p",4") to (Z,P,9q).

Thus, we have a map u from ¥ to the variety of all triples as in (a) such that
(b) holds. Let ¥’ be the variety consisting of all (z,p, ¢, \) € Ap v (without
stability condition) such that the triple (a) attached to (z,p,q,A) € Ap v
satisfies (b). ‘

Note that ¥ is an open subset of ¥’. On the other hand, by Lemma.
5.3, ¥ is a vector bundle of dimension
(c) Y;dimVi(dimD; — dimV; + Y, ,,_, dim V},,)
over the variety of triples (a) satisfying (b). This variety of triples is itself a
locally trivial fibration over the space of all surjective maps V — \Y% (in C%)
with fibre isomorphic to Ag v+, (where dim V; = dim'V; — dim \N/', for all
i). Using now 4.5(a), we see that this variety of triples has pure dimension
equal to

(d) dimV;dimV; + dy-
where V' is as above. It follows that ¥’ (and hence also ¥) has pure

dimension equal to the sum of (¢) and (d). This is equal to the expression
in the proposition, by 5.1(b). The proposition is proved.

COROLLARY 5.6. —  The fibre of the map Ay, v, /Gv — Zp induced
by ¥ at (A, 7) € vZp N Z, 3 has pure dimension (1/2)(dim A} ,/Gv —

6. Small maps.

6.1. Let F; be the set of all A € F such that Ry, = 0. Let Zgl,
Zg_El, ZY be the inverse images of E;1, E — E1, {0} under the canonical
map Zp — E.

LEMMA 6.2. — IfA € Ey, then Apvy = Ap v, =Ap v

Let (z,p,q) € Ap,v,». We associate to (z,p,q)
V,, (:L’I, 0, O) (S AO,V’,)\, (.’L‘”,p",qll) S A;DS,V/V’,A
as in 5.2. We see that Ag v’ x» # 0 hence, by 4.5(c), we have V' = 0. Hence
(z,p,9) = (¢",p",q") € A5 v »- Thus, Ap,v,x = AF v - Passing to dual
spaces we obtain Ap,v,x = Ap v - The lemma is proved.
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LEMMA 6.3.
(a) Zp,v is open dense in vZp.

(b) The canonical map Vv : AD v/Gv — vZp induced by ¥ restricts to
a homeomorphism 7rV C (Zp,v) =~ Zpy.

Since the canonical map Ap y/Gv — E is a submersion and E, is
open dense in E, the inverse image of F; under this map is open dense in
A3, v/Gv. This inverse image is contained in Ag'y,/Gv by 6.2. It follows
that the open set AR'y,/Gv of Ay y /Gy is also dense. Applying the
continuous surjective map A]s:,’V /Gv — vZp, we deduce that the image of
AB’:‘@/GV, that is Zp v, is dense in vZp. It is open by 4.12. This proves
(a).

We prove (b). It suffices to show that 7' C (Zpv) = AR /Gv.
Let (z,p,q,\) € 1! C (Zp.v). We associate to (z,p,q)

V' (2',0,0) € Agvrx, (2",0",¢") € ABv/via

as in 5.2. We have automatically (z”,p"”,q") € A;)*\s,/v, , and, as in the

proof of 5.5, there exists an isomorphism ¢ : V/V’ =5 V which carries
(z",p",q") to a triple in AD v - In particular, we must have V' = 0 and

(z,p,9) € AR’y - Thus, v C (Zpv) C A3y /Gv. The reverse inclusion
is obvious. The lemma is proved.

LEMMA 6.4. — Let D,V,V € C°. If V,V are not isomorphic in
CO, then dim(vZD N ZD,V) < dim A]sl»\v,/G'\v’

If A € Eq, we have (by 6.2) vZp N Zp = Zp v N Zp, hence

vZpNZy, 5N 25 = Zpv N2y 50 Zp = 0.
(We use 4.12(d) and our hypothesis.) Thus,
E—E
vZp N ZD,{J/ C ZD,:\V/ N ZD 1

It is therefore enough to prove that
(a) dim(Z, g N Zp~ ™) < dim AL /Gy

By 4.12, the space in the left hand side of (a) is homeomorphic to the
inverse image of F — E; under the canonical map AS 2 / Gy — E. Since

this map is a submersion and E — E; is a proper closed subset of E, the
dimension of the inverse image of £ — F; is < dim A;) 5 /G- The lemma

is proved.
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THEOREM 6.5. — The canonical map mvy : AB’V/GV — vZp Is
small.

By 5.1, Ap /G is smooth of pure dimension; by 4.13, 7y is proper.
From 4.12 we see that the sets vZp N Z 3 (for various Ve C°) form a
partition of v Zp into locally closed subvarletles Only finitely many of
these pieces are non-empty. One of them, Zp v is open dense in vZp and
7y is a homeomorphism over this open set. It is then enough to show that
for any other piece, that is vZp N Z w1th V V not isomorphic, twice
the dimension of any fibre over a pomt in the piece plus the dimension of
the piece is strictly less than dim v Zp. Using 6.4 and 5.6 we see that this
sum is strictly less than

dim Af v /Gv — dim A;,Q/Gg + dim A;),\N//GV =dimAp v/Gv

= dim VZD N
The theorem is proved.

6.6. The previous result should be compared with [N2, 10.11] which
can be reformulated to say that A§, v o/Gv — vZp N Zp is semismall.
That result is essentially equivalent to [N2, 7.2], which in turn is proved
using the special case of Corollary 5.6 with A = 0. The proof of this special
case given in [N2, 7.2] is based on the method of proof of [L3, 12.3]. This
proof does not generalize to the case A # 0, where the arguments in Section
5 are needed.

6.7. If Y’ is an irreducible complex algebraic variety, the intersection
cohomology complex IC(Y"') is well defined. (We normalize it so that its
restriction to an open dense subset of Y’ is C.) If Y is an arbitrary complex
algebraic variety, the intersection cohomology complex of Y is defined as
IC(Y) = @y/IC(Y') where Y’ runs over the set of irreducible components
of Y and IC(Y’) is extended to the whole of Y by 0 outside Y'. If Y is
equidimensional and 7 : Y - Y is a small map then, from the definitions,

IC(Y) = (m1)«(C).

COROLLARY 6.8. —  We have canonically IC(vZp) = (mv)«(C)
(as complexes on v Zp).

Note that v Zp is equidimensional.

LEMMA 6.9.

(a) For any V € C° vZp is a union of irreducible components of Zp.
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(b) Any irreducible component of Zp is contained in some v Zp and the
isomorphism class of such V in C° is uniquely determined.

By 5.1, any irreducible component of Ap, y, meets Af, y,  for some
A € E;. Hence any irreducible component of vZp meets Zg‘. Since the
closed subsets v Zp cover Zp, it follows that any irreducible component of
Zp meets Zg'. By the proof of 6.3(a), ZE* is open dense in Zp. Hence the
irreducible components of Zp are exactly the closures of the irreducible
components of Zgl.

The closed subsets vZp N Zgl of Zg’ coincide with the subsets
Zpv N Z5 of Z5' and these form a partition of Z5' by 4.12(d). Hence
vZD ﬂZIE)1 are both open and closed in Zg‘ hence are unions of irreducible
components of ZZ'. The lemma follows.

6.10. One expects that Ap y, is connected (if non-empty). This is
equivalent to the property that Ap, v is connected (if non-empty) which
is stated in [N2, 6.2] but, as Nakajima informed me, the proof given there
is incorrect. If we assume that this property holds, then 6.9 would have a
simpler form, namely that the v Zp which are non-empty are precisely the
irreducible components of Zp.

6.11. Let ZD be the disjoint union UVAE,V /Gv whereV runs over
a set of representatives for the isomorphism classes of objects of C°. This
is a finite union since Ay, y is empty for all but finitely many V (see [L4,
5.14]). Moreover, ZD is canonically defined (independent of the choice of
representatives) due to the fact that we factor by Gv. Let 7 : Zp — Zp
be the morphism whose restriction to Ay, y,/Gv is 7y for any V. From 6.8
and 6.9 we deduce the following result.

COROLLARY 6.12. — We have canonically IC(Zp) = m(C) (as
complexes on Zp).

6.13. The action of W on Zp given by 1.5, 2.2 is denoted by w : z —
w(z). From definitions one checks that this action is through morphisms
of algebraic varieties. Since IC(Zp) is canonically attached to Zp, for any
w € W we have a canonical isomorphism 7, : w*IC(Zp) = IC(Zp).
Moreover, for w,w’ € W, 4. is equal to the composition

w*w IC(Zp) "2 w*IC(Zp) X IC(Zp).
In other words, the action of W on Zp lifts canonically to an action
of W on IC(Zp) hence (by 6.12) to an action of W on the complex
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m«(C). In particular, by passage to stalks, we see that for any W-orbit
O on Zp we have a natural action of W on the cohomology spaces of
Uzeom™ C (2). Also, we have an induced W-action on the cohomology
spaces of Z4 = 71 C (22) = UvAp,v,0/Gv.

6.14. By 2.3, 2.4 we have an action of Gp x C* on Zp. This is an
algebraic group action. Moreover, Gp X C* acts naturally on Zp so that 7 is
(Gp x C*)-equivariant. The construction of the W-action in 6.13 extends
automatically to the (Gp x C*)-equivariant setting in the same way as
the construction [L1] of the Springer representation was extended to the
equivariant setting in [L2]. This gives for example a natural W-action on

HO®XC"(78) = &y HS* " (Ap,v.0/Gv)

(equivariant homology) where Z3 = 7! c (2Z9).

6.15. Consider the fibre product Zg X z9 2%. (This is homeomorphic
to a variety in [N2, Sec.7].) Just as in [L1], from the W-action on ,(C) in
6.13, we obtain a W x W-action on HF®*C™(Z], x 20 ZD).

7. Weight spaces.

7.1. From the definition of 7 : ZD — Zp, we have a canonical “weight”
decomposition
m:(C) = &v(mv).(C)

where V runs over a set of representatives for the isomorphism classes of
objects of C® such that Af, v, # 0 and (7v)«(C) is extended to the whole of
Zp by 0 outside v Zp. In this section we describe the relationship between
the W-action on 7, (C) (see 6.13) and this “weight decomposition”.

LEMMA 7.2. — Let i€l and let VEC® be such that Zp v N Z5" # 0.
Then
(a) there exists V' € C° such that V; = V) for j € I — {i} and
dim V; + dim V; =dimD; + Zh;h’:i dim Vg
(b) si(ZpvNZE) = Zpv nZE.

We can find (z,p,q, ) € Ag’y, with X\ € Ey. Let U,b: U — V; be
as in 3.2(a). Since A € E;, we have \; # 0. By the argument in 3.4, b is

surjective. Hence dimV; > dimU = dimD; + _,,;,; dim Vv and (a)
follows.
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We prove (b). Since for A € E; we have A;D’T‘s,’)‘ = Ap,v,\ and
ARV x = Ap,v/» where X' = 5;()) € Ey,(see 6.1), it suffices to show
that the following diagram of sets is commutative:

’
e e
Apvy «— F — Apv/ x

Si

ZD — ZD
for A € E;. Here the left vertical map is induced by ¥, the right vertical
map is the analogous map for V', \’, and r,r’ are as in 3.3, 3.5.

Let ((z,p,q); (z/,p',¢')) € F. Let © € Fp (resp. 7’ € Fp) be defined
in terms of (z,p,q) € Ap,v,x (resp. (/,p',¢') € Ap,v/,x) as in 4.6. We
must show that 7/ = s} (7). It is enough to show that

(c) i) = T
for any f €1 of form iy,1s,...,1s. By definition,

ro_ ’ ot -
(d) T = i3 %41,32T42,45 Tig_1,isPi,

where the product of the z’ is taken to be 1 if s = 1. We wish to convert the
right hand side of (d) into an expression involving only g;, zx:,p; (rather
than ¢, z};,p;). We will achieve this by a repeated use of the identities
3.2(b2),(c). Assume first that s = 1 so that f is j and n{; = ¢;p] for some
J. If j # 4, then by 3.2(c) we have ¢jp} = ¢;p; = 7] = Tsh(f)- If j =1,
then by 3.2(b2) we have

P = GiPi + N = Tl pau = T
Assume now that s > 2. In the right hand side of (d) we may

— replace any two consecutive factors z;, , ; 77, ;..

it+11it =1 by xit—lyitzityit-}-l - E’ic,iz+1 )\z (using 32(b2)),

such that i;_1 =

. / , )
— replace any two consecutive factors z;, _ ; @, ; . such that i,y #

Q41,5 =1 bY Ti,_, i, Ti, 4,4, (using 3.2(b2)),
—if 4; = 1 we replace g;z; ;, by ¢;z;, (using 3.2(b2)),

—if 45 = i we replace z; _ ;p; by =i,_,,:pi (using 3.2(b2)),

— the remaining factors will be of the form z}, or g, or pj with k # ¢ # [
and can be replaced by z; or gx or p; (using 3.2(c)).

The resulting expression is clearly equal to m, (5. This proves (c)
hence also (b). The lemma is proved.

PROPOSITION 7.3. —  The subvarieties v Zp of Zp (for various V)
are permuted among themselves by the W-action on Zp.
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It suffices to show that, given i € I and V € C° such that vZp # 0,
we have s;(vZp) = v/ Zp for some V’. As in the proof of 6.3, Zp v N Zgl
is open dense in vZp. Hence it is suffices to show that, given ¢ € I and
V € C° such that Zp v N Zg‘ # 0, we have s;,(Zp v N Zg‘) =Zp,v' N Zg‘
for some V’. But this follows from Lemma 7.2. The proposition is proved.

7.4. From the proof of 7.3 we see that if vZp # 0 and w € W, then
w(vZp) = 32D where V € CY is characterized by the equation

Z dimD;w; — Z dim Vjaj = w( Z dimDjw; — Z dim Vjaj)
j J J J

in F at least if w = s;; but then this automatically holds for general w. It
follows that w carries the summand (my).(C) of m.(C) onto the summand
(m5)+(C) where V is as above.
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