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50, 2 (special Cinquantenaire) (2000), 461-489

QUIVER VARIETIES AND WEYL GROUP ACTIONS

by George LUSZTIG (*)

Introduction.

Consider a finite graph of type ADE with set of vertices I . Naka-
jima [Nl], [N2] associates to v, w € N7 a smooth algebraic variety 9Jt(v, w)
("quiver variety") and shows that the cohomology of Uv97l(v, w) has a na-
tural module structure over the corresponding enveloping algebra; note that
for fixed w, 97t(v,w) is empty for all but finitely many choices of v. He
also constructs [Nl, Sec. 9] a Weyl group action on this cohomology space
using techniques of hyper-Kahler geometry. In this paper we give an alter-
native construction of this Weyl group action, based not on hyper-Kahler
geometry, but on techniques of intersection cohomology, analogous to those
used in [LI] to construct Springer representations. This gives in fact a re-
finement of the Weyl group action (see 6.13, 6.14, 6.15). I wish to thank
H. Nakajima for interesting conversations.

1. A non-linear W-action.

1.1. We fix a graph with finite set of vertices I . We assume that there
is at most one edge joining two vertices of I and no edge joining a vertex
with itself. Let H be the set of all ordered pairs i,j of vertices such that
i^j are joined by an edge. For h = (i,j), we set h = (j,z) € H, j = h' € J,
i = h" € I . We fix a function e : H -^ {1, -1} such that e(h) + e(h) = 0
for all h. We often write e^ instead of e(h).

(*) Supported by the National Science Foundation.
Keywords: Quiver Variety — Weyl group — Intersection cohomology.
Math. classification: 20G99.



462 GEORGE LUSZTIG

Let I be the set of all sequences i\, i^,..., is (with s > 1) in I such that
(%jk, Zfc+i) ^ H for any A; G [1, s - 1]. Let T be the C-vector space spanned
by elements [%i, ̂  • • • -, is] corresponding to the various elements of I and by
the elements ui indexed by i € I . Let T be the subspace of T spanned by
the elements of the form [%i, ̂  • • • ^s}' We regard T as an algebra in which
the product [zi,^, . . . ,is][jij2,. • • j s ' ] is equal to [ % i , ^ 2 , . . • ^s,j2,.. • J s ' }
if is = j\ and is zero, otherwise.

Let E be a C-vector space with basis {wi\i € I}. For A € E we define
A, e C by A = ̂  A,n7,. For z e J we define s, : £' -^ E by s^(A) = V
where A^ = -A,, A^ = A^ + A, if (ij) € If and A^ = A^ if '̂ ^ i and
(z,j) ^ H. Let IV be the subgroup of GL(E) generated by the S i : E -> E
with i e J. It is well known that TV is a Coxeter group with generators Si
and relations s? = 1, SiSjSi = SjSiSj if (z,j) € I:f, 5^^- = sjSi ifi^j and
(z,^') ^ H. For any A C E we define a linear map 5^ : ̂ 7 —> F by

s^(uj) = HJ for all '̂;
^H=H+A^;s^ii,^,...,^] = ^ n^^^+i^)^1^2''-^^17]

J'.JCJo t€J

i f [ z i , % 2 , . . . , ^ ] ^ H-
Here Jo == {t € [2,5 - l]^ = z,^-i = ^+1}; [^1^2,...,^;^] is the

element of I obtained from [zi, ?2, • • . ^s} by omitting it, ̂ +1 for all ^ e J.

It will be convenient to define s^ : T —> F as the composition
~ s^ ~

T ^ F —>• T —> T where the first map is the obvious imbedding and
the third map is the projection with kernel ^ Cuj. We define a map
S i : E x T —^ E x :Fby

(a) (AJ)-(^(A),^(/)).

Let s^ = ^-A. We define s ^ : E x T —^ E x T
(b) (A,/)->(^(A),^(/)).

LEMMA 1.2. — The map 1.1 (a) is an involution.

Assume first that %i , i^,..., is in I is other than i. Let Jo be as in 1.1.
We have

5^(A,[zi ,Z2,. . .^s])=sz(s,(A), ^ n^^^+i^)^1^25---'15517])
J;JcJo<eJ

ANNALES DE L'lNSTITUT FOURIER



QUIVER VARIETIES AND WEYL GROUP ACTIONS 463

== (^ ]c n^-^^+i^) n {^M^X^)[^^'"^J'})
j , j ' teJ t^J'-J

JCJ'CJo

=^ E E (-i)171!!^^^)^'^,...,^;^])j ' j'.jcj1 tej'
J ' C J Q

= (A , [ l i ,Z2 , . . . , ^ ;0 ] ) = ( A , [ % i , Z 2 , . . . , ^ ] ) .

Next, we have 5^(A,[z]) = ^(^(A), [%]+A^) = (<5^(A), [z]+A^-A^) =
(A, [z]). Clearly, 5^(A,n^) = (A,Hj) for any j. The lemma is proved.

LEMMA 1.3. — If(z,j) ^ H, thensiSjSi = SjSiSj : Ex.F—> Exf.

It suffices to show that
(.,\ ^^zW^iW^^ - ̂ W^W^^^aj s^ s -̂ s^ (p — Sj s^ Sj (p

for any 0 e ^7. The case where 0 = Uj for some j is trivial. Hence it suffices
to show that (a) holds for (f) = [/] where / € I is ^i ,^- • • ^s- Note that
(a) for 0 = [/] implies

(al) -s^-sf^-s^f} = s^s^s^f}.

We prove (a) for [/] by induction on s. Assume first that [/] = [i]. Both
sides of (a) are in this case equal to [z] + (A^ + \j)uz. The same argument
applies to [/] = [j]. If s <: 2 and [/] is not [i] or [j], then (a) is obviously
true for <p = [/]. We now assume that s > 3.

Assume first that the first three entries of / are not of the form kik
or Ijl. Let // € I be ^2^35 " - ^ s - We have [/] = [^^H/'] and from the
definition we see that

^.(A)^.(A)^ ^ ̂ ^,..(A)^.W^

S^S^S^f} = [i^S^S^S^f'}.

By the induction hypothesis, (al) holds for [/']; hence (a) holds for (f) = [/].
Thus, we may assume that the first three entries of / are kik or Ijl. Since
i,j play a symmetrical role, we may assume that the first three entries are
kik. Let u be the largest integer > 3 such that /i = (^i,^ • • • ^u) is of
the form jijij . . . i (so u is even) or of the form kikik... ik where k may or
may not be j (so u is odd). If u < s, we have [/] = [/i][/2] where /2 ^ I is
%^, iu+i^ • . . ^s and from the definitions we have

^s,w^(X)^ ̂  ̂ s.w^w^^s,w^w^^

^W^W,^ = ̂ .,,(A)^,(A)^^^^.,,(A)^,(A)^^^

TOME 50 (2000), FASCICULE 2 (special Cinquantenaire)



^4 GEORGE LUSZTIG

Since the induction hypothesis is applicable to /i and /2, we see that (a)
holds for /. Thus, we may assume that u = s. We must consider three
cases:

(b) / = fu is kik ' " i k where k -^ j and i appears u times;

(c) / = fu is jzj • • • jz where i appears u + 1 times;

W f = /n is jzj • • • ij where z appears n times.

Assume that / = fu is as in (b) and u > 1. We must show

V ^V^f-p .-A.^-^r . A ^ - f2-^ V p / ' M ^ / " / 1 ^^^ (-SijAi) f^
uf,u"•ft^u"<ul<u v / v /

= E f^) (-^ + ̂ ))n~u///^//

n'^O^n'^it v /

or that

E (^^(-^^^'-^(-^A.)——7 = (-^.(A, + A,))——'
ut\u"<ut<u v /

which is clear.

Assume that / = fu is as in (c) and u > 1. We must show that A = B
where
A- .,£. OOC:) '̂—^.'̂ "—

0<it3<u3 <^u^ <u

vf_p. .X.^-^l ^
M ^ZJ^z) JU3^

B- .,£. OC) (:)(-̂ )«-(-.,(̂ y)--
O^^S ̂ ^2 ̂ 'u! ̂ u

^(—r ..\ .^—ui f
"V ^ J Z ^ ] ) Jus-

We have
A= E E o,^——(-^^)a(-^(^+A,))('(-^A,)c^

lt3€[0,-u] ">fr,c • • • .(•
a+t>+c=u—it3

= E E (n-n^^-^^^-^u3e[o,u] be [0,11—113] v o / .»
x(-£ji(>i+Xj))''fu,

= E E r.-^^)!^!^^-^^^^^"""3^
it3€[0,u] 66 [0,14—1x3] v o / o

= E -i!,^3(-^•(^+^•)r-u3/u3=/o,
n3€[0,u] 3'

ANNALES DE L'lNSTITUT FOURIER



QUIVER VARIETIES AND WEYL GROUP ACTIONS 465

5= E E ^n^^^0^-^'^^^^^-^^)^
"3e[°-"] a+^;-^

= E E 7—\M>.. .(-^(Ai+A,))"-"3-6
Albelo^sl^-"3-^'"3'

x^^Ai+A,))6/^

= E E f.-^^)!^!^^^^^^^""3^
n3€[0,u] foe[0,-a—a3] /

= E -^^3(-^(^+A,))u-n3/„=/o.

'u3e[o,u] 3'

Thus, A = B as desired. Next we assume that / = fu is as in (d) and
u > l.We must show that A = B where

A- .,£. (:,)(:)(;:)(-̂ )-(-..(̂ ))-"
0<U3 <U2

x(-eyA,)"-"1.^ + (-e^AO"(/o + (A, + \j)u,),

B- .,£. (:)(:)(;:;)(-̂ .)"-(-(̂ y)"-
^^'"s^'1^ ̂ ^i ̂ 1A

x(-^AJ)"-"l/„3+E(^-_ll)(-^(A<+^))"l(-£^^•)"~"l(/o+A^).
I^HI<U

We have A = E.3€[o,u] ̂ 3/^3 + ̂ ^ ̂  = En3e[o,u] ̂ 3^3 + ̂ ^
where

x—^ u\ u^ + d
Au3 = E .i,,̂  ,3T^T6(-£tA•)a(-^(A^ + A.))fr(-£^-)c'

a4-t»+c=n—ti3

^= E ^ '̂̂ '̂ .^(^.^•(-^(^y)1
a+b+c=u—U3

x (-e^A,)0

for 113 e [l,t(],

^ = E aî , ^——(-^•^^(-^(^ + A,))^-^)6 + (-^A,)",
a,b,c

a+b+c=n
a>l

5o=(-^(Ai+A,))(-e,,A.)"-1,

TOME 50 (2000), FASCICULE 2 (special Cinquantenaire)



466 GEORGE LUSZTIG

a=(-^A,)"(A,+A,),

I3 = E f"~ ̂ (-^ + ̂ ^(-^A,)"-"1^.
ui;K«l<» v"1 - ̂

It is enough to show that

(e) Aus = -8^3

for v,s € [0,u]. (The equality a = /3 is obvious.) We have

Ao=(-£ij\j) ^ (a^TiWc'aT^"^^"1

a+b-|-c=u

x (-£,,(A, + \^\-e^Y + (-e^r

=(-^-A,) ^ 7————,(-^A.)"-c-l(-£yA,)c+(-^•A.)"
i tA C/) «€'.ce[o,u-i] v /

=(-^A,) E —————(-^A^-^-ir+^A,)"
c6[0,it-l] ' / ' '

= (-^A'X-^)"-^-!)"-1 + (-eyA,)"
=(-£,,A,)"- l(-^•(A,+AJ))=Bo.

This verifies (e) for us = 0. Assume now that 1(3 € [l,u]. The identities

(n y- (-l)pl ^ 1
p.p,;̂ =p ̂ -P2^ - p2) ^a; - 1)(^ - 2) • • • (^ - P)'

/^ v- (-l)?'l(a;+p2) ,; ,,;(h) ^ ——,,,,—— == 6p,ox + 6p,i,
Pl,P2;Pl+P2=P

for p e N, are easily verified. We set X == —£ijXj^Y = —eij\i. Then A^g
equals

Y u! ——n3±^— (-i^x^y^y0

^ a!&i!62!c!^3! ^ 3 + 0 + ^ 1 + ^ 2a,b^ ,02 ,c
a+bi+b2+c=u—n3

= \^ u> ^3+0 . ^\bi+b2^Ya+biyc+b2

^ a!6i!62!c^3!n3+a+6i+62a,bi ,02 ,c
a+bl+b2+c='u—^t3

^ ^ ^+a (-1)62 yay/3

^ ^3! ^ a!<»i! v / z^ h\c\(u-c)
^^_ " a+bi=a 1 c+&2=/3

= y -"',("3^,0+^,1)-7—^7———^—^xaYf3
^ u^. u(u-l)(u-2)-.-(u-/3)

Q!4-/3=ti—U3

ANNALES DE L'lNSTITUT FOURIER



QUIVER VARIETIES AND WEYL GROUP ACTIONS 467

u\ u^= _______"______Yu~u^
U3\ U(U - l)(u - 2) • • .-03

u\ 1
+ —————————————————-———___________yy^-lt3-l

^^-^-^...(us+l)^
^ yn-us _p j^y^-ns-l = (J^ + y^yn-^-l

and B^g equals

E (n-l)! us-^a+b 1 + ^ 2 k *,.,.„,, .?.^^.-1)1 ,.̂  '(-n-y'-x^-^
a+&l+&2+c=^l—u3

V ("-1)' H3+a+6i+6o .^ya+b^^+c
^, a!6i!62'c!(H3 -1)! us+a v l ) r A

a+bi +b2~^c='u—'u3

= y" ("-i)' v- (-1)°
^ ("3 - 1)' a+——=a ̂ ^'(^ + Q - &l)

0!+(9=ti—ti3 x

v- (-1)^3+0+62) .
^ .•^•

= E ^1 (.3+a)(H3^-l) ... .3 ̂ •0(M3 +a)+ ̂ l)rax/?

o;4-/3=u—ti3

^ yn-ns _^ j^yn-ns-l =: (J^ + y\y^-U3-l

Thus, Ay,^ = B^g. The lemma is proved.

LEMMA 1.4. — Ifi^ j, (ij) ^ H, then s^ = s,Si : E x f -^
E X.F.

As in the proof of 1.3 it is enough to show that s^^^/] =
^i3 ^[f] for / e I of the form kik • • • ik where i appears u times. This
follows immediately from the definitions.

1.5_ From Lemmas 1.2, 1.3,1.4 we see that there is a unique TV-action
on E x F in which the generators s, acts by 1.1 (a). This TV-action is not
a linear one.

Now 1.2, 1.3, 1.4 remain true if the s^ are replaced by ^A; these new
statements are obtained from 1.2, 1.3, 1.4 with m, e^ replaced by -n,,
-Cij. Hence there is a unique TV-action on E x F in which si acts by 1.1
(b).

TOME 50 (2000), FASCICULE 2 (special Cinquantenaire)



468 GEORGE LUSZTIG

2. The set ZD-

2.1. Let C° be the category whose objects are 7-graded C-vector
spaces V = (Biei^i ^th dimV^ < oo for all i. For V € C°, we set
Gv=OGL(V,).

We fix D e C°. Let ^b be the vector space of all linear maps
F —" End(D); here End(D) is understood in the ungraded sense.

For i C I and A € E we define a map ^b —^ ^b by associating
to TT : ̂  -^ End(D) the composition F 1L^ F -^ End(D). This map
^b —)> ^b is denoted again by s^. We now define S i : E x F^ — ^ E x ^b
by ^(A,7r) = (^(A),s^(7r)). Since s^ = (^)~1, from 1.5 it follows that
there is a unique action of W on E x ^b such that for any i € J, ^ € TV
acts in the way just described. Following [L4, 2.4], we define a subset ZD
ofEx ̂ b as follows. An element (A, TI-) € E x F^ is said to be in ZD if it
satisfies conditions (a), (b), (c) below. (For (f) e F we write TT ,̂ instead of
7r(^) :D^D).

(a) If / € I is % i , . . . , %s, then 7r[y] maps D^ into D^ and maps Dj to 0,
for j ^%s.
(b) For any i G J, TT-^^ is the identity map on D^ and is zero on Dj, for
JT^.
(c) For any /,/ '€! such that / ends and /' begins with the same i G I ,
we have

^[fW] ^^^^[f^ikiur] - -M/H/I
k

where k runs over the set of vertices such that (z, k) G ^T.

PROPOSITION 2.2. — ZD ^ a W-stabJe subset ofEx F^.

Let (A,TT) G ZD. Let i G J and let (A',71-') = ^(A,7r) € -E x ^b.
It is enough to show that (A',7r') € ZD- It is clear that (A^TT') satisfies
conditions 2.1(a),(b). To verify condition 2.1(c), we consider nine cases. In
the other cases, the result is trivial. In the following formulas, an expression
like

^"[**m]^'[m**] / , ̂ %j^[**mjzu**] •"^^^l\^^^t•A^7^'[**^l^'u**]

~^iu[eiu\) ^{^u^} ~^~ ^i'^^^uiu**] ~^~ ^i^iu^i)7^^*^*}

should be interpreted as follows: each of
/7^[**^t^]^[^^A**] ? ^[^^uijiu**] ? ^[**n**] 5 '7T[**um**]

ANNALES DE L'lNSTITUT FOURIER



QUIVER VARIETIES AND WEYL GROUP ACTIONS 469

stands for a linear combination o^^[...uiYK[^u•'•\'>'K[•••uijiu•••}'l'K[•••u•••\^[•••u^u'••}
over the same index set, with the same coefficients.

Casel.

^W ~ ̂ L^W + A^]
3

= (^[i] ~ ̂ Ui)^} - A^J - ^^£ij7^[ij^] + A^TT^] ~ ̂ Ui)

3

= —A^] — A^TT^j = 0.

Case 2. Assume that (u, i) € H.

^M^M - S5^'71'^] + ̂ M
j

== TTHTrH - ^^^uj^[uju] - ̂ m(^mA^)7r^] + A^TT^]

3

= -AnTT^] + A^TT^j + A^TT^] = 0.

Case 3.

^l71'^-] "~ l^ '̂71'̂ -] + ̂ 7^|^fe•.•]
j

= (Tr^j — A^7r^)7r^^^] — ^^jTr^j^**] — ^A;(^A;A^)7r[^^+] + ^[ik^]
j

= -Az7T[^**] - A^7T[,fc^] = 0.

Case 4. Assume that (u^i) € ^f.

^M71'^-.] ~ ̂ ^j71'^-] + A^7^|^•.•]
j

= ̂ H^**] - ̂ ^njTr^n**] - ̂ uiSiu^i^u^] + A^TT^^^

J

= —\u^[u**] + A^TT^^^j + A^7T[^^^] = 0.

Case 5.

^-fez]71'^ - Z^^^-kiji} + ̂ 7^(••.fe^]
J

= Tr**^^] — A^TT^) — ^_^£ij7T[^kiji] — £ik(^ik^'i)^[^ki} + A^TT^^^]

3

= —\i7T[^ki] — A^TT^^^] = 0.

TOME 50 (2000), FASCICULE 2 (special Cinquantenaire)



470 GEORGE LUSZTIG

Case 6. Assume that (n, i) € H.

^[•••u^u] -^^^{...uju} + ̂ {...u}
3

= 7r**n7T[u] — ^_^£uj^[^uju} ~ ̂ ui^iu^i^^u] + A^TT^^j

J

= —A^TT^^] + A^7T[,^] + \u^[^u} = 0-

Case 7.

^•••m]71'^-] - ̂ [̂...mjzu...] + ̂ ...mn-]
3

— '^'[**ui]'7r[zn**] / ^ ̂ 'tj"7r[**mj'zii**l •"^m^luA^jTr^^^^^^]
j

~ ̂ n(^uAJ ^[^u^\ + A^TT^^^^^^] + A^(£^A^)7r[^^^^^]

= A^TT^^^^sK^j A^TT^^^^^^j == 0.

Case 8. Assume that u ̂  v.

^-m]71'^-] - ̂ ^^••mjw...] + ̂ ^•.HW-]
J

=: 7^[**^t^]'7^[%^;**] ^^ ^ij^^^uijiv**} — ^m(^'i'aA^)7r^^^^^^]

— £iv(^iv\)^'[*^uiv**} ~^~ ^i^^^uiv*^}

— —^•i^^muiv^^} ^i'^^^uiv**] '== u'

Case 9. Assume that (u, i) e H.

^•-a]71^...] - ̂ ^^.•.ujn-] + ̂ [...'a...]
J

= ̂ l**^^**] - ̂ ^•7T[**njn**] - ̂ m^A^TT^^^] + A^TT^^]

J

= —A^7r[^^^^^j + A^Tr^^^j + A^TT^^^^^] = 0.
The proposition is proved.

2.3. Consider the action of C* on E x F^ given by

^(A^h-^Ay)

where TT^ = ^+l^[./•] for / e I of form z i , . . . , is and TT^ = TT^, for i € J. It
is easy to check that this restricts to an action of C* on ZD which commutes
with the TV-action.

ANNALES DE L'lNSTITUT FOURIER



QUIVER VARIETIES AND WEYL GROUP ACTIONS 471

2.4. Consider the action of GD on ZD given by

(^):(A,7r)^(A.7r')

where TT^ = 9i^[f}9is C for / e I of form % i , . . . , % s and TT^ = TT^ for
i € J. It is easy to check that this action commutes with the C*-action and
with the W-action.

3. The varieties AD,V.

3.1. Given D,V € C°, let MD,V be the vector space consisting of all
triples ( x ^ p ^ q ) where

x = (xh)heH,Xh € Hom(V^,V^/),
p = (pj)^i,pj e Hom(D^V^),

9 = fe-)jeJ^j € Hom(V^D^).

Following [Nl], let AD,V be the affine variety consisting of all
{(x,p, q), A) in MD,V x E such that

(a) ^ Wh^ - PiOi - \i = 0 : V, -> V,
h\h'=i

for all i C I . For any A € E let AD,V,A be the affine variety consisting of all
(x,p,q) e MD,V such that (a) holds; this may be naturally identified with
the fibre at A of the fourth projection AD,V —^ E.

The group Gv acts on MD,V in a natural way (see [L4, 1.2]); this
induces an action of Gv on AD,V and on AD,V,A for any A G E.

3.2. In the remainder of this section we fix i € J, D, V, V G C°,A, A' €
E such that A' = Si (A) and V^ = V^- for j e I - {z}; dimV, + dimV^ =
dimD, + E^;^=z dimV/,//. Let £/ = D, C C^;^=zV/,//. Let F be the affine
variety whose points are the pairs ((^,p,g); ( x ' . p ^q ' ) ) e MD,V x A^v
such that conditions (a)-(d2) below are satisfied:

(a) the sequence 0 -^ V^ a-^ U -^ V, —^ 0 is exact; here, a =
(^ (^)^;^=z) and b = (Pi^ (^^)/z;^=z);

(bl)^ we have66-aa = X1, : U -^ U where a = (p^ (^^)^;^=,) : £/ ̂  V^
and 6 = (9,, (.r/i)^;^=z) : V, -^ U\

(b2) £-h(x^Xh - x^) = 6^\/, : \h' -^ V^,, for any h,h such that
h" =i,h' = i; qip, - q^ = A^ : D, -̂  D,; rr^p, - x^p\ = 0 for any h such
that /^' = i\qiXh - q[x'^ = 0 for any h such that h" = z;
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472 GEORGE LUSZTIG

(c) xh = x'f, if h' + i, h" ^ i; pj = p'^ q, = ̂  if j ^ ,;

(dl) E/,;fc'=, WhXh - pjqj = \j : Vj -^ Vj if j / i;

(d2) E/̂ '=, ̂ 'H - P'^ = >', : V, - V,if j + i.

Remarks.

(i) Conditions (bl), (b2) are equivalent.

(ii) In the presence of (b2), (c), conditions (dl), (d2) are equivalent.
Indeed, let 8 be the difference of the left hand sides of the equalities in
(dl), (d2). We have 6 = E^^e-^x-^ - x^) - p^ +p^. Using
(c) we see that 6 = E^=^=i^h(^h - x^) and, by (b2), this is
\'^(h; h1 = j, h" = z), which equals \j - X^.

(iii) For a point in F we have automatically S^,^ ̂ h^h ~ P'i^i =
\[. Indeed, since a in (a) is injective, it is enough to show that

(*) ^ ̂ <4 - W - X^ = 0 : V^-. V,,,
h\h'=i

for any h such that h' = i and

(**) E ̂ <4 - ̂  - W = o : v^ D^.
/15/i^z

By (b2), the left hand side of (*) is

E ^^^^-^Pz^
/i, '̂̂

and this is 0, by (a). Again by (b2), the left hand side of (**) is

E e-hQiX-^ - qipiq^
h;h'=i

and this is 0, by (a).

(iv) For a point in F we have automatically E^'=z Wh^h - Piqi =
\i. Indeed, since b in (a) is surjective, it is enough to show that

(*) E Wh^h^ - PiqiX^ - \iX^ = 0 : V ,̂ -^ V,
/i;̂ ^

for any h such that h" = i and

(**) E ^-h^hPi - PiQiPi - \ipi = 0 : D, -^ V,.
h,h'=i

By (b2), the left hand side of (*) is

E Wh^'h^ - ̂  - piq^ - \iX,
h;h'=i
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which by (a) equals—A^, — \iX- = 0. Again by (b2), the left hand side of
(**) is

^ e-^x-^p\ - piq[p[ - \',pi - Xipi
h,h'=i

which by (a) equals —X^pi — \ipi = 0.

3.3. From Remarks (iii), (iv) in 3.2, we see that the first (resp. second)
projection is a well defined map r : F —> AD v \ (resp. r ' : F —> AD v v).

3.4. In the remainder of this section we assume that \i ^ 0. In this
case, for any (x^p^q) € AD,V,A? the map b : U —> V^ (as in 3.2(a)) is
surjective. Indeed, the identity map of V^ is equal to —A^~1 C bb with b as
in 3.2(bl).

Similarly, for any { x ' ^ p ' ^ q ' ) € AD,^,^ th^ map a : V^ —> U (as in
3.2(a)) is injective. Indeed, the identity map of V^ is equal to —A^~1 C da
with a as in 3.2(bl). The group

G = OL(V,) x GL(VQ x JJ GL(V,-)
Wi

acts naturally on ^AD^A^AD,^,^ compatibly with the maps r^r1\ so
that the G action on AD,V,A factors through the Gv-action in 3.1 and the
G action on AD^^V factors through the analogous Gy'-action.

PROPOSITION 3.5.

(a) r is a principal GL(V^)- bundle.

(b) r7 is a principal GL(V^) -bundle.

We prove (a). We fix x = (x,p,q) e AD,V,A- Then r~1 C {x) may be
identified with the set of all pairs (a, a) where

^ = {^ Wh-^=i) € Hom(V^, £7), a= (^, (^4)^;^=.) ^ Hom((7, V^)

are such that 3.2(a),(bl) hold. (Then 3.2(d2) holds automatically by
3.2(ii).) We show that the first projection establishes a bijection

(c) {(a, a)| 3.2(a),(bl) hold } ̂  {a| 3.2(a) holds}.

Let 0 == bb—\[ : U —> U where b = (g^, {x^)h\h'=i) ^ V^ —> (7. Assume that a
satisfies 3.2 (a). We must show that there is a unique linear map a : U —> V^
such that ad = 0, or equivalently, that the image of (/) is contained in the
image of the imbedding a (that is, in the kernel of b). Thus, it is enough
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to show that b(/) = 0, or that bbb — \[b = 0. It is also enough to show that
bb - \[ = 0. This is clear.

We see that r"1 C {x) may be identified with the set of all a : V^ —> U
such that 3.2(a) holds, or equivalently (since b is surjective) with the set of
all isomorphisms of V^ onto Kerb. This is clearly isomorphic to G'L(V^).
This proves (a).

We prove (b). We fix (rr', ?',</) € AD^V- Then r'~1 C ( x ' ) may be
identified with the set of all pairs (6, b) where

b = (p,, (ehX^h^^i) G Hom(£7, V,), 6 = (9,, (x^^h^i) € Hom(V,, U)

are such that 3.2(a),(b) hold. (Then 3.2(dl) holds automatically by 3.2(ii).)
We show that the first projection establishes a bijection

(d) {(M)|3.2(a),(61)hold} -^ {6|3.2(a)holds}.

Let ^ = da + \[ : U —^ U where a = (p^ {^h^h)^"^)' Assume that b
satisfies 3.2 (a). We must show that there is a unique linear map b : V^ —> U
such that bb = '0, or equivalently, that the kernel of b (that is, the image
of a) is contained in Ker'0. Thus, it is enough to show that ^a = 0 or that
aaa + X^a = 0. It is enough to show that aa -h \[ = 0. This is clear. We
see that r'"1 C (x1) may be identified with the set of all b : U —> V^ such
that 3.2(a) holds, or equivalently (since a is injective) with the set of all
isomorphisms of the cokernel of a onto V^. This is clearly isomorphic to
GL(Vi). This proves (b). The proposition is proved.

COROLLARY 3.6. — The maps r,r' in 3.3 induce bisections

(a) AD,V,A/GV ^F/G ^AD,V/,V/GV

where orbit spaces are taken in the set theoretical sense, and isomorphisms
of affine algebraic varieties

(b) AD,V,A//GV ^-FUG -^AD,V/,Y//GV

where the orbit spaces are taken in the algebraic geometric sense.

COROLLARY 3.7. — Assume that D = 0 and let

dy = (1/2) ̂  dim V/,/ dimV/^.
h

Then AQ,V,A Aas pure dimension c?v if o-nd only if Ao,v' A' hs^ pure
dimension d\r'.
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We set ^ = dimV^,^ = dimV^. The two conditions above are
equivalent to the condition that F has pure dimension dv + ^/2, (resp.
^v + ^f). So it is enough to prove that dv — c?v7 = ^2 — ^/2. We have

d-y-d^= ̂  Vh"^i- ^ ^^= ̂  ^(^z-^)
h;h'=i h\h'=i h^h^i

=(^+^-^)=^-^2.
The lemma is proved.

4. The subsets ZD,V and v^D of ZD-

4.1. In the remainder of this paper we assume that our graph is of
finite type, that is, W is a finite group.

Let E' = Hom(£\ C). We shall regard i € I as an element of E ' by
i(wj) = 6ij. For any i € J, we define a, e E by o^ = 2w, - S/r/i'=z ^/i"-
Then {o^,?} form a root datum and W is its Weyl group. For v € £" we
define ^ e C by v = ̂  ̂ z. The action of W on E induces an action of
W on E ' , given by Sz : ^ ̂  s^) = $ - ̂ (c^)z. Let R be the set of vectors
in E ' of the form w(z) for some z € J, w € IV. For A e ̂  let

^ = {d e ^|d(A) = 0}.

4.2. Let £'0 be the set of all A e E such that for any i we have either
Re(A,) > 0, or Re(A,) = 0 and Im(A,) ^ 0.

LEMMA 4.3. — Any W-orbit in E meets EQ in a unique point.

This is well known.

LEMMA 4.4. — Let V e C°, A e EQ. Assume that Ao,v,A + 0. Then
for any i e I we have either \i = 0 or V^ = 0.

Let ((^),0,0) € AO,V,A. We have

^A,dimV,=^TY(A,,V,)=^Tr( ̂  ̂ ^,V,)
i i i h\h'=i

=^^TY(^^,V^).
/i

In the last sum the term corresponding to /i, h cancel out. Hence the sum
is zero and we have

^A,dimV,=0.
i
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Let I ' = {i e J|V, ^ 0}. Write Re(A,) = A^,Im(A,) = A^'. Then
Szez' \ dimV^ = 0, hence

^ \', dim V, = 0, ^ A^' dim V, = 0.
icr w

Since A^ € R>o for all z, we deduce that for any i € J',A^ = 0, hence A^' ^ 0.
Hence the equality ^^j/ A^' dimV^ = 0 implies A^' = 0 for all i € I ' . Thus,
for z e J' we have A^ = A^' == 0 hence A^ = 0. The lemma is proved.

PROPOSITION 4.5. — Let V e C°,\ e E be such that AO,V,A 7^ 0-
Then

fa^ AO,V,A Aas pure dimension c?v;

(b) Gv has a unique closed orbit in AO,V,A?'

(c) ifRx =0, thenV = 0.

Assume first that A € J%- Let Jo = {^ G I\\i = 0}. Clearly,Jo C R\.

We prove (a). We may replace the datum (J , J f , - - - ) in 1.1 by
(Io, HQ, ' • •) where HQ = [h € H\h' e Jo? ̂ '/ ^ ^o}- Using Lemma 4.4, we see
that AO,V,A may be identified with Ao^v^o defined in terms of (Jo? HQ^ ' • •)
where V is the Jo-graded vector space defined by V^ = Vi for i € Jo. By
[L3, 12.3], AQ^^O has pure dimension d\^'. Since V^ = 0 for i (f. Jo, we have
d-^ = ̂ ,. This proves (a).

We prove (b). As in the proof of (a), we are reduced to the case where
A = 0. In that case the result is contained in [L4, 5.9].

We prove (c). Assume that R\ = 0 and V^ -^ 0. By Lemma 4.4, we
have \i = 0 hence i G R\^ a contradiction.

This completes the proof of the proposition under the assumption
that A € EQ. We now consider the general case.

For any A C J?, let r = r\ be the smallest integer > 0 such that there
exists a sequence A = A°, A 1 , . . . , V in E and a sequence z'i, ̂  • • - ,ir m J
with the following properties:

A^eJ^ A^^A0)^2-^1),...^^^7-1), A^A^+1

for j = 0 ,1 , . . . , r — 1. Note that r\ is well defined by 4.3. We prove the
proposition for A 6 E (and any V such that AQ,V,A 7^ 0) by induction on
r\. If r\ = 0, the result is clear by the first part of the proof. Assume now
that r\ > 1. By definition, we can find % € J such that A' = Si (A) -^ A and
fx' = r\ — 1. Since A' -^ A, we have \i -^ 0. We define U, b: V^ —> U as in

ANNALES DE L'lNSTITUT FOURIER



QUIVER VARIETIES AND WEYL GROUP ACTIONS 477

3.2 (with D = 0) in terms of some (x, 0,0) € AO,V,A. As in 3.4, from \i ̂  0
we deduce that b is surjective. Hence dimV^ > dim U = S^/^ dimV^/.
Hence there exists V € C° such that

V,=V;. for j€Z-{Q;

dimV,+dimV^= ^ dimV^.
h;h'=i

By 3.6(a), AO,V',Y 7^ 0- By the induction hypothesis, the proposition holds
for (V',V). Using 3.7, we see that (a) holds for (V,A). Using 3.6(b),
we see that (b) holds for (V,A). Finally, assume that R\ = 0. Then
R\' = Si(R\) = 0. Hence V = 0, by the induction hypothesis. Then the
formulas above relating V^, V show that V^ = 0 for all j. The proposition
is proved.

4.6. Let D e C°. For any / e I of form zi,^ • • • ,is and any linear
form \ : Hom(D^,D^) -^ C, we define a function b/^ : ZD —^ C by
&^(A,7r) = x(^[f])' For any i e J, let ^ : ZD -^ C be defined by
^(A.TI-) = A^. Let JE?i be the C-algebra with 1 of functions ZD —> C
generated by the functions bf^ for various /, \ as above and by the
functions ^ with i e I . An argument almost identical to that in [L4, 5.3]
shows that B\ is a finitely generated algebra and that ZD is naturally in
bijection with the set of algebra homomorphisms B\ —> C. Thus, ZD has
a natural structure of affine variety.

Now let V e C°. As in [L4, 2.12], we define a map tf : AD,V -^ ZD
by (rr,p, g, A) i—^ (A, 7r) where TT € ^b is given by

7T[/] = Qi^^X^^ ' "Xi^^pi, : D^ -> D^

for any / e I of form i\^i2i" ' ^s with s >_ 2,

^j] = W3 : B] -> Oj
for any j € I and 71-̂  is as in 2.1(b) for any i e I .

The map ̂ ' : AD,V —> Z^ is easily seen to be a morphism of algebraic
varieties. Since this map is constant on the orbits of Gv on AD,V? it induces
a morphism i9 : AD,V//GV —> -^D of algebraic varieties.

THEOREM 4.7. — i9 is a finite, injective morphism. In particular,
it is a homeomorphism onto its image (both in the Zariski and ordinary
topology).

The finiteness of i? is proved as in [L4, 5.8]. The injectivity is proved
in [L4, 5.10] modulo the statement [L4, 5.9] which at the time of writing
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[L4] was only known for A = 0 but is now known without restriction, by
4.5(b).

4.8. Let A|) ̂  be the open subvariety of Ap^v consisting of all
(a;,p,^,A) € AD,V such that the following stability condition holds: if V
is an J-graded subspace of V such that Xh(V^) C V^/, for all h € H and
pi(Di) C V^ forall %, then V = V.

Let Ay ̂  be the open subvariety of AD,V consisting of all (;r, p, q, A) €
AD,V such that the following stability condition holds: if V is an J-graded
subspace of V such that a^(V^) C V^,, for all h € H and ^(V) = 0
for all %, then V = 0. A^^.Aj^v were introduced in [N2], in a different
notation.

For any A € E, let A|) ̂  ̂  (resp. Aj^^r^) be the open subvariety
of AD,V,A consisting of all triples (x.p^q) C AD,V,A such that (a;,j?,g,A)
belongs to AJ) ̂  (resp. to A^^). Then A^^^ (resp. A^y^) may be
naturally identified with the fibre of the fourth projection A^ ̂  —^ E (resp.
A^v -" E) at A-

By [N2], the natural action of Gy on A^ ̂  or A^^ is free; hence the
orbit spaces Aj^/G'v^Aj^/Gv are well defined.

4.9. There is a natural isomorphism Ap ̂  "̂  r̂̂ * v* 5 lt ls glven by
(x,p,q,\) ̂  ^x^q^p.X). (Notation of [L4, 2.27].)

4.10. Let A^*v = ADV n ̂ v For ^Y A e JE;^ let ^v A =
A S n A * s
^D,V,A 1 '^D^A-

LEMMA 4.11. — The following two conditions for (x,p,q,\) G
AD,V ^re equivaJent:

(i) (rc,p,9,A) €A^*v;

(ii) (a;,p,^,A) has trivial isotropy group in Gy and its G^-orbit in
AD,V ls closed.

Assume that (ii) holds. Then (x,p,q,\) C A^y by [N2, 3.24]; the
same proof shows that (a^,p, 9, A) 6 AJ) ̂ , hence (i) holds.

Assume now that (i) holds. Then the first assertion of (ii) is proved in
[N2, 3.10]. It remains to prove the second assertion. Let 0 be a Gv-orbit in
the closure of the orbit of (.r,p, 9, A). By Hilbert's theorem, there exists a
one parameter subgroup ̂  of Gy (t ^ C*) such that lim^oo C^^P? 9? ^) =
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( x ' . p ' . q ' . X ) € 0. We can write V = C^V^ where <^ = ̂  for all
v C V^. Let V^) == Cfc-fe^fcV^. We have xn{v) = ̂ , o^,^ for v e V^,
where Xh-.k.k''^^' —> V^,. We have p(d) = Sfc^^) for ^ e D where
^ : D -> V^. For ^ e C*, write ^{x,p,q) = (;r(^),p(^),^)). We have

x(t^ = Y^x^k^'-^ p(t) = ̂ pW
k1 k

and q(t)(v) = t~kq{v) for z» e V^. Since lim^oo CtO^P^^) exists, it
follows that Xh.^k' = 0 for k' > k, pW = 0 for k > 0, g|^ = 0 for k < 0.
Hence V^~1^ is ^-stable and contained in Ker(^). Since {x^p^q^ A) € Aj^^,
it follows that V^~1^ = 0 and p(D) C V°. (Up to this point, the argument is
exactly as in [N2, 3.20].) Moreover, for k >. 0, V^ is .r-stable and contains
Im(p). Since (x,p,q, A) G AJ) y^ it follows that V(fc) = V for A; ^ 0. Thus,
V = V° hence (a^j/.g^A) = (.r,p,^,A). This proves that the Gv-orbit of
(a;,p, g, A) is closed. The lemma is proved.

LEMMA 4.12.

(a) The map A^*v/Gv —> -̂ D induced by ^ : AD,V —> Zj^ is injective.

(b) Its image, ^D,V? depends only on the isomorphism class ofV in C°.

(c) ZD,V ^ a locally closed subvariety of ZD a,̂ d ^ homeomorphic (both
for the Zariski and ordinary topology) to A^*^/GV-

(d) The subsets ZD,V (̂ Dr V running through a set of representatives of
the isomorphism classes of objects in C°) form a partition of ZD-

We prove (a). Our map is the composition

AD*V/^V —^ AD,V//G'V ——> ^D

where the first map (the obvious one) is injective by 4.11 and ^ is injective
by 4.7. This proves (a). The proof of (b) is trivial.

We prove (c). From 4.11 we see that A^^/Gv is an open subva-
riety of AD,V//GV and from 4.7 we see thatAD,v//Gv is mapped by '9
homeomorphically onto a closed subvariety of ZD- This proves (c).

We prove (d). Let (A,7r) e ZD. Let V = S^/^ (notation of [L4,
2.3, 2.8]). We have V € C° by [L4, 5.12]. We define (x,p,q) e AD,V,A
as in [L4, 2.18] (with V = 1C'). As pointed out in [L4, 2.18], we have
(a-,p, q) G Aj^ ̂  ^ and ^'(a;,?, ̂ , A) = (A, 7r). From the definition of /C^ we
see also that {x,p, q) 6 Aj^ ^. Thus, (A, 7r) G ZD,V« We see that the union
of the subsets ^D,V is the whole of ZD-
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Now let (A,TT) € ZD,V H ZD,V/ where V,V e C°. We want to
prove that V,V are isomorphic in C°. We can find (x,p,q,\) e A^*v
and (^p'^A) e A^v/ such that ^(x,p,q,\) = ̂ (^p'^A) = (A,7r).
By [L4, 2.20] we can assume that V = S ^ / V , V = S^/V (notation of [L4,
2.3]) where V, V are 7-graded subspaces ofS^ containing T^ and contained
in ̂  (notation of [L4, 2.8]), that (x,p,q) is obtained from V as in [L4,
2.18] and that ( x ' . p ' . q ' ) is obtained in an analogous way from V. From
the definition of /C71' we see that the condition that (x,p,q,X) e A*.^/
is equivalent to the condition that V = 1C'. Similarly, the condition that
(o-'.p', q ' , A) c A^D^, is equivalent to the condition that V = K " . Hence
we have V = V = K,^. It follows that S^/V = £^/V and our claim follows.
The lemma is proved.

LEMMA 4.13.

(a) The morphism A^ ,v/Gv -^ ^D induced by ^ : AD,V -^ ^D is
proper. Hence its image, V-^D, ^ a dosed subyariety ofZD.

(b) v-^D depends only on the isomorphism class ofV in C°.

Our map is the composition

AD,V/^V ̂  AD,V//^V ^^D

where the first map (the obvious one) is proper by [N2, 3.18] and ^ is proper
by 4.7. This proves (a). The proof of (b) is trivial.

5. A computation of dimensions.

LEMMA 5.1. — Let V,D e C°. The varieties AJ^V^DV are

smooth of pure dimension

2dv + 2^dimV,dimD, - ̂ dimV? + |J[
i i

and the fourth projections Aj^y -^ E,A^ y -^ £1 are subniersions.

The fact that Ag^o is smooth is proved in [N2, 3.10]. That proof
identifies the tangent space of A^yo at (o-.p, q) with the kernel of a certain
linear map m : MD,V —> Homco(V.V) (obtained by taking the derivative
of the equation defining An,v,o). The main point is that m is surjective
(which follows from the stability condition in the definition of Ag^ J. A
similar argument shows that A^5 ̂  is smooth and that the tangent space
of Aj^v at (x,p, q, A) is {(k, A') e MD,V C E\m(k) + A7 = 0} where m is as
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above and, in the last equation A' is regarded as an element oiHom<;o (V, V)
whose z-component is multiplication by \[. This tangent space maps to the
tangent space of E at A by (A;, A') i-> A'. Using the fact that, as above, m
is surjective, the assertions relative to A]̂  follow. These assertions imply
the assertions relative to Ap ̂ , by 4.9.

5.2. Let A € E. Given (x^p^q) e AD,V,A; let V be the largest I-
graded subspace of V such that a^(V^/) C V^// for all h and 9%(V^) = 0
for all i. Clearly, V is well defined. Note that (a*, p, q) induces in an obvious
way elements

Or', 0,0) e Ao,v',A, (^p'W) e A^v/v',A-
Conversely, assume that we are given an J-graded subspace V C V and
elements (^,0,0) € AO,V-,A, (^VW) e A^/^.

Let <I> be the set of all ( x ^ p ^ q ) € AD,V,A which give rise as above to
V'.^.O.O),^,^,^).

LEMMA 5.3. — A choice of an I-graded complement V" ofV in
V defines on <I> a structure of vector space of dimension
(a) ]^dimWdimD,-dimV^+ ^ dimV^,,).

i h;h'=i

Let V" as above. We identify V/V = V" in an obvious way. For
(x,p,q) C <I> we have

^'Q=^(^+4W
for all z»" e V^/, where

2/ = {yh)h€H, Vh '• V^, -> V^,,,

^(^)=4(^) for all ^eV^, ,
p,(d)=p[{d)+p^d) for deD, ,
^:D,-V^ <:D,-V^
q,{v")=q'^v"), for all ^ 'CV^.

By the change of variable (x,p,q) i—> (^/,p') the variety <1> becomes the set
of all ( y ^ p ' ) as above such that

^ r̂.̂ , + ew^ - ̂  = 0 : V^- V^
/i; '̂̂

for all z € ^. The solutions of this system of equations (with fixed x\ x" ^ q")
form a vector space. It remains to show that this vector space has dimension
as in (a). This vector space is the kernel of the linear map

T : Oh Hom(V^, V^,,) C C, Hom(D,, VQ -. C, Hom(V^, VQ,
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{ y . P ' ) ̂  ( ^ e-^yh + £^4' - p\q'A .
h;h'=i lej

We will show that T is surjective; this implies that dim Ker T is given by
(a). To show the surjectivity of T, we consider the perfect bilinear pairing

ezHom(V^V^) x CzHom(V^VO -. C

given by ((a,),(&,)) = Ez^A)- It is enough to show that, if (a,) is
orthogonal to ImT under this pairing, then (a^) = 0. Thus, we assume
that

^^tr(a^^) +^tr(a^4') - ̂ tr(a^') == 0
/i z

for any (27, j/). Equivalently,

][^tr((a^ - ̂ a^//)^) - ̂ tr(^a^) == 0
^ %

for any ( y , p ' ) . It follows that

(*) ah'x^ - x'-^ah," = 0 for all /i,

(**) q^ca = 0 for all i.

(*) shows that Im(a) is an ^'-stable J-graded subspace of V"; (**) shows
that Im(a) C Ker(g"). By the stability condition for (x" , p " ,q"), we then
have Im(a) = 0 hence a = 0. (Compare with the argument in the proof of
[N2, 3.10].) The lemma is proved.

5.4. Now let D, V, V € C° and let (A, 7r) € v^nHZ^ ̂ . By definition,
(A, 7r) is in the image of the map

(a) A|̂  -̂  ZD

(restriction of ^/) and there is a unique (x,p,q,\) e A5'*! which maps to

(A, 7r) under the map ^' defined in terms of V.

Let ^ be the fibre of (a) at (A, 7r).

PROPOSITION 5.5. — ^ has pure dimension equal to

(l/2)(dimA^v/Gv - dimA^ ̂ /G^) + dimGv.

If {x,p, q, A) 6 ̂  then, by attaching to it

(a) V, (^, 0,0) e Ao,v/,A, (^P", q") € A^/^,A
as in 5.2, we have automatically (a/'y.g") 6 A^* ,̂ ^ moreover, from
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the definitions, i?' (relative to V/V) carries {x" , p " , q", \) to ̂ {x,p, g, X) =
(A,7r). Using now 4.12(a), we see that there exists an isomorphism (neces-
sarily unique)

(b) L : V/V ̂  V which carries (x" , p " , q") to ( x , p , q).
Thus, we have a map u from ^ to the variety of all triples as in (a) such that
(b) holds. Let ^/ be the variety consisting of all (x,p, q, A) € AD,V (without
stability condition) such that the triple (a) attached to (:r,p,g,A) € AD v
satisfies (b).

Note that \F is an open subset of ^/. On the other hand, by Lemma
5.3, ^/ is a vector bundle of dimension

(c) Ez dimV^dimD, - dimV, + E^=. dnnV^,,)
over the variety of triples (a) satisfying (b). This variety of triples is itself a
locally trivial fibration over the space of all surjective maps V —^ V (in C°)
with fibre isomorphic to AO^V^A (where dimV^ = dimV^ — dimV^ for all
z). Using now 4.5(a), we see that this variety of triples has pure dimension
equal to

(d) dim V, dim V, + c^
where V is as above. It follows that ^' (and hence also ^) has pure
dimension equal to the sum of (c) and (d). This is equal to the expression
in the proposition, by 5.1(b). The proposition is proved.

COROLLARY 5.6. — The fibre of the map A!) y/^v —^ Z^ induced
by ^ at (A,7r) e V-^D H Z „ has pure dimension (l/2)(dimAf) y/G\- —
dim A5 -/G,,).D^7 v^

6. Small maps.

6.1. Let Ei be the set of all A G E such that R\ = 0. Let Z^\
Z^~^1, Z^Q be the inverse images of E\^E — E-^^ {0} under the canonical
map ZD —^ E.

LEMMA 6.2. — If\ € £'1, then AD,V,A = A|) v A =: ^]^v A -

Let (x^p^q) e AD,V,A- We associate to (x^p^q)

V, (^, 0,0) e Ao,v-,A, (^y, q") e A^v/v/,A
as in 5.2. We see that AO^^A ¥" 0 hence, by 4.5(c), we have V = 0. Hence
(x,p,q) = { x " , p " , q " ) € Ag^. Thus, AD,V,A = A^^A- Passing to dual
spaces we obtain AD,V,A == A^ ̂  ^. The lemma is proved.
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LEMMA 6.3.

(a) ZD,V is open dense in v-^D.

(b) The canonical map Try : Af^ y/Gy -̂  V^D induced by ^ restricts to
a homeomorphism 7r^1 c (^D,v) ^^ ^D v

Since the canonical map A^ y/Gy -^ E is a submersion and E^ is
open dense in E, the inverse image of E^ under this map is open dense in
AE^V/^V. This inverse image is contained in Aj^/Gv by 6.2. It follows
that the open set A^/GV of A^ y/Gy is also dense. Applying the
continuous surjective map A^ ̂ /Gy -> V^D, we deduce that the image of
AD*V/^V, that is ZD,V, is dense in v^D. It is open by 4.12. This proves
(a).

We prove (b). It suffices to show that TTy1 c (Zn,v) = A^/Gy.
Let Or,p,(7,A) € 7r^1 c (^D,v). We associate to (x,p,q)

V7, (^ 0,0) G Ao,v-,A, (^^//, q") C A^v/^^

as in 5.2. We have automatically {x^p"^") e A^* ,̂ ̂  and, a^ in the
proof of 5.5, there exists an isomorphism L : V/V -^'V which carries
{x11,?"^") to a triple in A^ ̂  In particular, we must have V = 0 and
{x,p,q) e A^ ^. Thus, TTy1 c (^D,v) C A^*v/^v. The reverse inclusion
is obvious. The lemma is proved.

LEMMA 6.4. — Let D . V . V C C°. JfV.V are not isomorphic in
C°, then dim(v^D H Z^ ̂ ) < dim A5 ~/G^.

If A € ^i, we have (by 6.2) v^D H Z^ = ^D^ H Z^, hence

V^D n z^ ̂  n ZD = ̂ D,V n z^ ̂  n z^ = 0.
(We use 4.12(d) and our hypothesis.) Thus,

v^n^c^n^.
It is therefore enough to prove that

(a) <iim(Z^ H Z^) < dimA^^/G^.

By 4.12, the space in the left hand side of (a) is homeomorphic to the
inverse image of E - E^ under the canonical map A^*i/G~ -^ E. Since
this map is a submersion and E - E^ is a proper closed subset of E, the
dimension of the inverse image of E - E^ is < dim A8 ~/G~. The lemma
is proved.
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THEOREM 6.5. — The canonical map Try : AD v/^v —^ V^D is
smalL

By 5.1, Af^v/Gv is smooth of pure dimension; by 4.13, Try is proper.
From 4.12 we see that the sets v-^D n z^ v (for various v ^ C°) form a
partition of v-^D into locally closed subvarieties. Only finitely many of
these pieces are non-empty. One of them, ZD,V is open dense in v-^D and
TI-V is a homeomorphism over this open set. It is then enough to show that
for any other piece, that is v^D n ̂  v with v?v not isomorphic, twice
the dimension of any fibre over a point in the piece plus the dimension of
the piece is strictly less than dimv^D. Using 6.4 and 5.6 we see that this
sum is strictly less than

dimA^v/Gv - dimA^/G^ + dimA^ ̂ /G^ = dimA^v/Gv

== dimy^D.
The theorem is proved.

6.6. The previous result should be compared with [N2, 10.11] which
can be reformulated to say that Aj^o/Gv -^ V^D H Z^ is semismall.
That result is essentially equivalent to [N2, 7.2], which in turn is proved
using the special case of Corollary 5.6 with A = 0. The proof of this special
case given in [N2, 7.2] is based on the method of proof of [L3, 12.3]. This
proof does not generalize to the case A ^ 0, where the arguments in Section
5 are needed.

6.7. If V is an irreducible complex algebraic variety, the intersection
cohomology complex IC(Yf) is well defined. (We normalize it so that its
restriction to an open dense subset of V is C.) If V is an arbitrary complex
algebraic variety, the intersection cohomology complex of Y is defined as
IC(Y) = ̂ Y ' I C ^ Y ' ) where Y ' runs over the set of irreducible components
of Y and I C { Y ' ) is extended to the whole of Y by 0 outside V. If Y is
equidimensional and 71-1 : Y —^ Y is a small map then, from the definitions,
IC(Y) = (Tri).(C).

COROLLARY 6.8. — We have canonically JG(v^D) = (7Tv)*(C)
(as complexes on -yZ^).

Note that v^D is equidimensional.

LEMMA 6.9.

(a) For any V e C°, v-Zb is a union of irreducible components of Z^.
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(b) Any irreducible component of ZD is contained in some v-^D and the
isomorphism class of such V in C° is uniquely determined.

By 5.1, any irreducible component of A^ ̂  meets A[) ̂  ^ for some
A G £'1. Hence any irreducible component of v-^D meets Z^1. Since the
closed subsets V^D cover ZD? it follows that any irreducible component of
ZD meets Z^. By the proof of 6.3(a), Z^1 is open dense in ZD- Hence the
irreducible components of ZD are exactly the closures of the irreducible
components of Z^.

The closed subsets v-^D H Z^ of Z^1 coincide with the subsets
ZD,V H Z^ of Z^ and these form a partition of Z^1 by 4.12(d). Hence
V^D nZ^1 are both open and closed in Z^ hence are unions of irreducible
components of Z^1. The lemma follows.

6.10. One expects that AJ) ̂  is connected (if non-empty). This is
equivalent to the property that A^ y o ls connected (if non-empty) which
is stated in [N2, 6.2] but, as Nakajima informed me, the proof given there
is incorrect. If we assume that this property holds, then 6.9 would have a
simpler form, namely that the v-^D which are non-empty are precisely the
irreducible components of ZD •

6.11. Let ZD be the disjoint union UvA^ y/^v whereV runs over
a set of representatives for the isomorphism classes of objects of C°. This
is a finite union since A^ y is empty for all but finitely many V (see [L4,
5.14]). Moreover, ZD is canonically defined (independent of the choice of
representatives) due to the fact that we factor by Gv. Let TT : ZD —> ZD
be the morphism whose restriction to AJ) v/^v is TI-V for any V. From 6.8
and 6.9 we deduce the following result.

COROLLARY 6.12. — We have canonically IC(Z^) = T^(C) (as
complexes on Zj^).

6.13. The action of W on ZD given by 1.5, 2.2 is denoted by w : z \—>
w(z). From definitions one checks that this action is through morphisms
of algebraic varieties. Since IC{Z-o) is canonically attached to ZD? for any
w € W we have a canonical isomorphism 7^ : W*JC(ZD) -^ JC(ZD).
Moreover, for w,w' € W, ^ww' is equal to the composition

W'*W*JG(ZD) w^" W'*JG(ZD) ̂  IC(Z^).
In other words, the action of W on ZD lifts canonically to an action
of W on IC{Z-o} hence (by 6.12) to an action of W on the complex
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TT^(C). In particular, by passage to stalks, we see that for any TV-orbit
0 on ZD we have a natural action of W on the cohomology spaces of
^zeo7^~l C {z). Also, we have an induced TV-action on the cohomology
spaces of Z^ == 7r-1 c (Z^) = UvAn,v,o/Gv.

6.14. By 2.3, 2.4 we have an action of GQ x C* on ZD- This is an
algebraic group action. Moreover, GD x C* acts naturally on ZD so that TT is
(GD x C*)-equivariant. The construction of the TV-action in 6.13 extends
automatically to the (GD x C*)-equivariant setting in the same way as
the construction [LI] of the Springer representation was extended to the
equivariant setting in [L2]. This gives for example a natural TV-action on

j^oxcr^) ^ ev^f^^AD^o/Gv)

(equivariant homology) where Z^ = 7r~1 C {Z^).

6.15. Consider the fibre product Z^ x^o Z^. (This is homeomorphic
to a variety in [N2, Sec. 7].) Just as in [LI], from the TV-action on 7r*(C) in
6.13, we obtain a TV x TV-action on H00^ (Z^ x^ 2^).

7. Weight spaces.

7.1. From the definition of7T : ZD —> ^D? we have a canonical "weight"
decomposition

7r*(C)=ev(7rv)*(C)

where V runs over a set of representatives for the isomorphism classes of
objects ofC70 such that AJ) ̂  •=/=- 0 and (7rv)*(C) is extended to the whole of
^D by 0 outside V^D- I11 th^s section we describe the relationship between
the TV-action on 7T»(C) (see 6.13) and this "weight decomposition".

LEMMA 7.2. — Let iel and let VeC° be such that ZD,V H Z^ ^ 0.
Then
(a) there exists V 6 C° such that V^ = V^ for j G I - {i} and
dimV, + dimV^ = dimD, -h S^;^/=, dimV/,//;

(b) ^(ZD,vnz^)=ZD,v'nz^1.

We can find (^,p,^,A) (E A^*v with A € ^i. Let £7,6 : ?7 -^ V, be
as in 3.2(a). Since A € EI, we have \i ^ 0. By the argument in 3.4, b is
surjective. Hence dimV^ > dim U = dimD^ -h ^/i.^/=^dimV^// and (a)
follows.

TOME 50 (2000), FASCICULE 2 (special Cinquantenaire)



488 GEORGE LUSZTIG

We prove (b). Since for A C E\ we have A^)*^ ^ = AD,V,A and
^D*V A' = ^D/V^V where A' = Sz(\) e £'i,(see 6.1), it suffices to show
that the following diagram of sets is commutative:

AD,V,A ^— F —> AD;^^i i
Z-D ——> Z-Q

for A (E E-t. Here the left vertical map is induced by ^/, the right vertical
map is the analogous map for V, A', and r, rf are as in 3.3, 3.5.

Let ((x,p,q)', (x^p'.q')) G F. Let TT e ̂ b (resp. TT' C ^b) be defined
in terms of (x,p,q) C AD,V,A (resp. (a/, ?',</) € AD^A') as in 4.6. We
must show that TT' = s^(7r). It is enough to show that
(C) TT^] = 7T^

for any / € I of form i\^i'2i - ' - i ' i s - By definition,

(d) ^(/l = ^i^i,Z2^2,Z3 • • • ^is-l.isP'is

where the product of the x ' is taken to be 1 if s = 1. We wish to convert the
right hand side of (d) into an expression involving only qj, Xki, pj (rather
than (/, x^, j/). We will achieve this by a repeated use of the identities
3.2(b2),(c). Assume first that s = 1 so that / is j and Trfn = q^p'. for some
j. If j ^- %, then by 3.2(c) we have g'p'- == qjpj = TTm = 7^sx\f}' ^ 3 = ̂
then by 3.2(b2) we have

Q'iP'i ̂  QiPi + ̂ i = ̂ W+XiUi = ̂ s^f]'

Assume now that s > 2. In the right hand side of (d) we may

- replace any two consecutive factors x\ _ ^ x[ ^ such that it-i =
it^it = z by Xi,_^i,Xi,^^ - ̂ ,^,A, (using 3.2(b2));

- replace any two consecutive factors x^_^^x^^ such that if-i ^
it+i,it = i by ^_i,z,^,^i (using 3.2(b2)),

- if zi = i we replace q[x\^ by qiX^ (using 3.2(b2)),

- if ig = i we replace x[ _ j^ by Xi^_^^pi (using 3.2(b2)),

- the remaining factors will be of the form x^ or q^ or p[ with k ̂  i ̂  I
and can be replaced by Xki or qk or pi (using 3.2(c)).

The resulting expression is clearly equal to 7^sx^f}' ^ls proves (c)
hence also (b). The lemma is proved.

PROPOSITION 7.3. — The subvarieties v-^D ofZ^ (for various V)
are permuted among themselves by the W-action on ZQ .
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It suffices to show that, given i € I and V e C° such that v-^D 7^ 0?
we have ^(v^n) = V'^D for some V. As in the proof of 6.3, ZD,V n Z^
is open dense in v^D- Hence it is suffices to show that, given i e I and
V G C° such that ZD,V H ̂  ^ 0, we have ^(ZD,V H Z^) = ZD,V' H Z^1

for some V. But this follows from Lemma 7.2. The proposition is proved.

7.4. From the proof of 7.3 we see that if v^D ¥• 0 ^d ^ € W\ then
w(v^o) = v^t^ wnere V € C° is characterized by the equation

y ^ dim D^Wj — ^^ dim VjOj = w ( ^^ dim DjWj — ^^ dim VjOj )
3 3 3 3

in E at least if w = ^; but then this automatically holds for general w. It
follows that w carries the summand (7Tv)*(C) of TT*(C) onto the summand
(7r—)^(C) where V is as above.
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